Achieving Precise Spectral Analysis and Imaging Simultaneously with a Mode-Resolved Dual-Comb Interferometer
Abstract
1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hinkley, N.; Sherman, J.A.; Phillips, N.B.; Schioppo, M.; Lemke, N.D.; Beloy, K.; Pizzocaro, M.; Oates, C.W.; Ludlow, A.D. An Atomic Clock with 10–18 Instability. Science 2013, 341, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
- Bloom, B.J.; Nicholson, T.L.; Williams, J.R.; Campbell, S.L.; Bishof, M.; Zhang, X.; Zhang, W.; Bromley, S.L.; Ye, J. An optical lattice clock with accuracy and stability at the 10–18 level. Nat. Cell Biol. 2014, 506, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Fortier, T.M.; Kirchner, M.S.; Quinlan, F.; Taylor, J.; Bergquist, J.C.; Rosenband, T.; Lemke, N.; Ludlow, A.; Jiang, Y.; Oates, C.W.; et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photonics 2011, 5, 425–429. [Google Scholar] [CrossRef]
- Xie, X.; Bouchand, R.; Nicolodi, D.; Giunta, M.; Hänsel, W.; Lezius, M.; Joshi, A.; Datta, S.; Alexandre, C.; Lours, M.; et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photonics 2016, 11, 44–47. [Google Scholar] [CrossRef]
- Udem, T.H.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef]
- Balling, P.; Křen, P.; Mašika, P.; Berg, S.V.D. Femtosecond frequency comb based distance measurement in air. Opt. Express 2009, 17, 9300–9313. [Google Scholar] [CrossRef]
- Diddams, S.A.; Hollberg, L.; Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nat. Cell Biol. 2007, 445, 627–630. [Google Scholar] [CrossRef]
- Hébert, N.B.; Boudreau, S.; Genest, J.; Deschênes, J.-D. Coherent dual-comb interferometry with quasi-integer-ratio repetition rates. Opt. Express 2014, 22, 29152–29160. [Google Scholar] [CrossRef]
- Coddington, I.; Newbury, N.R.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, M.; Hänsch, T.W.; Picqué, N. A phase-stable dual-comb interferometer. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Schiller, S. Spectrometry with frequency combs. Opt. Lett. 2002, 27, 766–768. [Google Scholar] [CrossRef] [PubMed]
- Potvin, S.; Genest, J. Dual-comb spectroscopy using frequency-doubled combs around 775 nm. Opt. Express 2013, 21, 30707–30715. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.C.; Newbury, N.R. Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs. Phys. Rev. Lett. 2008, 100, 013902. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, B.; Ozawa, A.; Jacquet, P.; Jacquey, M.; Kobayashi, Y.; Udem, T.; Holzwarth, R.; Guelachvili, G.; Hänsch, T.W.; Picqué, N. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 2009, 4, 55–57. [Google Scholar] [CrossRef]
- Okubo, S.; Iwakuni, K.; Inaba, H.; Hosaka, K.; Onae, A.; Sasada, H.; Hong, F.-L. Ultra-broadband dual comb spectroscopy across 1.0–1.9 μm. Appl. Phys. Express 2015, 8, 082402. [Google Scholar] [CrossRef]
- Mandon, J.; Guelachvili, G.; Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics 2009, 3, 99–102. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.C.; Nenadovic, L.; Newbury, N.R. Rapid and precise absolute distance measurements at long range. Nat. Photonics 2009, 3, 351–356. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.-J.; Lee, K.; Lee, S.; Kim, S.-W. Time-of-flight measurement with femtosecond light pulses. Nat. Photonics 2010, 4, 716–720. [Google Scholar] [CrossRef]
- Wang, C.; Deng, Z.; Gu, C.; Liu, Y.; Luo, D.; Zhu, Z.; Li, W.; Zeng, H. Line-scan spectrum-encoded imaging by dual-comb interferometry. Opt. Lett. 2018, 43, 1606–1609. [Google Scholar] [CrossRef]
- Lee, J.; Han, S.; Lee, K.; Bae, E.; Kim, S.; Lee, S.; Kim, S.W.; Kim, Y.J. Absolute distance measurement by dual comb interferometry with adjustable synthetic wavelength. Meas. Technol. 2013, 24, 45201. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, G.; Ni, K.; Zhou, Q.; Wu, G. Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement. Opt. Express 2018, 26, 5747–5757. [Google Scholar] [CrossRef]
- Boudreau, S.; Levasseur, S.; Perilla, C.; Roy, S.; Genest, J. Chemical detection with hyperspectral lidar using dual frequency combs. Opt. Express 2013, 21, 7411–7418. [Google Scholar] [CrossRef] [PubMed]
- Martín-Mateos, P.; Khan, F.U.; Bonilla-Manrique, O.E. Direct hyperspectral dual-comb imaging. Optica 2020, 7, 199. [Google Scholar] [CrossRef]
- Khan, F.U.; Guarnizo, G.; Martín-Mateos, P. Direct hyperspectral dual-comb gas imaging in the mid-infrared. Opt. Lett. 2020, 45, 5335–5338. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Wu, Z.; Cao, H.; Shi, Y.; Li, R.; Tian, H.; Song, Y.; Hu, M. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser. Opt. Commun. 2021, 482, 126566. [Google Scholar] [CrossRef]
- Hyun, S.; Choi, M.; Chun, B.J.; Kim, S.; Kim, S.-W.; Kim, Y.-J. Frequency-comb-referenced multi-wavelength profilometry for largely stepped surfaces. Opt. Express 2013, 21, 9780–9791. [Google Scholar] [CrossRef] [PubMed]
- Baumann, E.; Giorgetta, F.R.; Deschênes, J.-D.; Swann, W.C.; Coddington, I.; Newbury, N.R. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance. Opt. Express 2014, 22, 24914–24928. [Google Scholar] [CrossRef]
- Hase, E.; Minamikawa, T.; Mizuno, T.; Miyamoto, S.; Ichikawa, R.; Hsieh, Y.-D.; Shibuya, K.; Sato, K.; Nakajima, Y.; Asahara, A.; et al. Scan-less confocal phase imaging based on dual-comb microscopy. Optica 2018, 5, 634–643. [Google Scholar] [CrossRef]
- Thorpe, M.J.; Kreitinger, A.; Seger, E.; Greenfield, N.; Wilson, C.; Trey, P.; Kreitinger, S.; Gordon, S.; Schmitt, R.; Roos, P. Gas Mapping LiDAR for large-area leak detection and emissions monitoring applications. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 14–19 May 2017; p. AF2B.1. [Google Scholar]
- Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A.C.; Richter, A.; Burrows, J.P. A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft. Atmos. Meas. Tech. 2015, 8, 5113–5131. [Google Scholar] [CrossRef]
- Cossel, K.C.; Waxman, E.M.; Giorgetta, F.R.; Cermak, M.; Coddington, I.R.; Hesselius, D.; Ruben, S.; Swann, W.C.; Truong, G.-W.; Rieker, G.B.; et al. Open-path dual-comb spectroscopy to an airborne retroreflector. Optica 2017, 4, 724–728. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Farsund, Ø.; Rustad, G.; Skogan, G. Standoff detection of biological agents using laser induced fluorescence—a comparison of 294 nm and 355 nm excitation wavelengths. Biomed. Opt. Express 2012, 3, 2964–2975. [Google Scholar] [CrossRef]
- Miller, E.A.; White, T.A.; McDonald, B.S.; Seifert, A. Phase Contrast X-Ray Imaging Signatures for Security Applications. IEEE Trans. Nucl. Sci. 2013, 60, 416–422. [Google Scholar] [CrossRef]
- Castro-Suarez, J.R.; Pacheco-Londono, L.C.; Ve´lez-Reyes, M.; Diem, M.; Tague, T.J., Jr.; Hernandez-Rivera, S.P. FT-IR Standoff Detection of Thermally Excited Emissions of Trinitrotoluene (TNT) Deposited on Aluminum Substrates. Appl. Spectrosc. 2013, 67, 181–186. [Google Scholar] [CrossRef]
- Fermann, M.E.; Haberl, F.; Hofer, M.; Hochreiter, H. Nonlinear amplifying loop mirror. Opt. Lett. 1990, 15, 752–754. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Liu, Y.; Zhu, Z.; Luo, D.; Gu, C.; Zhou, L.; Xie, G.; Li, W. Ultra-precise optical phase-locking approach for ultralow noise frequency comb generation. Opt. Laser Technol. 2021, 138, 106906. [Google Scholar] [CrossRef]
- Zolot, A.M.; Giorgetta, F.R.; Baumann, E.; Nicholson, J.W.; Swann, W.C.; Coddington, I.; Newbury, N.R. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt. Lett. 2012, 37, 638–640. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Z.; Liu, Y.; Zhu, Z.; Luo, D.; Gu, C.; Zuo, Z.; Xie, G.; Li, W. Achieving Precise Spectral Analysis and Imaging Simultaneously with a Mode-Resolved Dual-Comb Interferometer. Sensors 2021, 21, 3166. https://doi.org/10.3390/s21093166
Deng Z, Liu Y, Zhu Z, Luo D, Gu C, Zuo Z, Xie G, Li W. Achieving Precise Spectral Analysis and Imaging Simultaneously with a Mode-Resolved Dual-Comb Interferometer. Sensors. 2021; 21(9):3166. https://doi.org/10.3390/s21093166
Chicago/Turabian StyleDeng, Zejiang, Yang Liu, Zhiwei Zhu, Daping Luo, Chenglin Gu, Zhong Zuo, Gehui Xie, and Wenxue Li. 2021. "Achieving Precise Spectral Analysis and Imaging Simultaneously with a Mode-Resolved Dual-Comb Interferometer" Sensors 21, no. 9: 3166. https://doi.org/10.3390/s21093166
APA StyleDeng, Z., Liu, Y., Zhu, Z., Luo, D., Gu, C., Zuo, Z., Xie, G., & Li, W. (2021). Achieving Precise Spectral Analysis and Imaging Simultaneously with a Mode-Resolved Dual-Comb Interferometer. Sensors, 21(9), 3166. https://doi.org/10.3390/s21093166