A Technique for Improving the Precision of the Direct Measurement of Junction Temperature in Power Light-Emitting Diodes
Abstract
:1. Introduction
2. Method
- Non-linearity in the temperature-dependence logarithmic term, which becomes significant when extending the T domain; and
- Fluctuations in B and b parameters, primarily due to technological heterogeneity.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nardelli, A.; Deuschle, E.; de Azevedo, L.D.; Pessoa, J.L.N.; Ghisi, E. Assessment of Light Emitting Diodes technology for general lighting: A critical review. Renew. Sustain. Energy Rev. 2017, 75, 368–379. [Google Scholar] [CrossRef]
- Zhou, J.; Long, X.; He, J.; Ren, F.; Fang, L. Uncertainty Quantification for Junction Temperature of Automotive LED With Die-Attach Layer Microstructure. IEEE Trans. Device Mater. Reliab. 2018, 18, 86–96. [Google Scholar] [CrossRef]
- Zissis, G.; Bertoldi, P.; Serrenho, T. Update on the Status of LED-Lighting World Market since 2018; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Lee, H.E.; Park, J.H.; Jang, D.; Shin, J.H.; Im, T.H.; Lee, J.H.; Hong, S.K.; Wang, H.S.; Kwak, M.S.; Peddigari, M.; et al. Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy 2020, 75, 104951. [Google Scholar] [CrossRef]
- Allen, T.J.; Beard, P.C. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics. Biomed. Opt. Express 2016, 7, 1260. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.-T.; Yu, T.-J.; Yan, J.; Chen, Z.-Z.; Zhang, G.-Y. Degradation behaviors of high power GaN-based blue light emitting diodes. Chin. Phys. B 2013, 22, 117804. [Google Scholar] [CrossRef]
- Meneghini, M.; Dal Lago, M.; Trivellin, N.; Meneghesso, G.; Zanoni, E. Degradation Mechanisms of High-Power LEDs for Lighting Applications: An Overview. IEEE Trans. Ind. Appl. 2014, 50, 78–85. [Google Scholar] [CrossRef]
- Wang, F.K.; Chu, T.P. Lifetime predictions of LED-based light bars by accelerated degradation test. Microelectron. Reliab. 2012, 52, 1332–1336. [Google Scholar] [CrossRef]
- Chang, M.-H.; Das, D.; Varde, P.V.; Pecht, M. Light emitting diodes reliability review. Microelectron. Reliab. 2012, 52, 762–782. [Google Scholar] [CrossRef]
- Weng, C.-J. Advanced thermal enhancement and management of LED packages. Int. Commun. Heat Mass Transf. 2009, 36, 245–248. [Google Scholar] [CrossRef]
- Wu, H.-H.; Lin, K.-H.; Lin, S.-T. A study on the heat dissipation of high power multi-chip COB LEDs. Microelectron. J. 2012, 43, 280–287. [Google Scholar] [CrossRef]
- Vaitonis, Z.; Vitta, P.; Žukauskas, A. Measurement of the junction temperature in high-power light-emitting diodes from the high-energy wing of the electroluminescence band. J. Appl. Phys. 2008, 103, 093110. [Google Scholar] [CrossRef]
- Keppens, A.; Ryckaert, W.R.; Deconinck, G.; Hanselaer, P. Modeling high power light-emitting diode spectra and their variation with junction temperature. J. Appl. Phys. 2010, 108, 043104. [Google Scholar] [CrossRef]
- Horiuchi, M.; Yamagata, Y.; Tsutsumi, S.; Tomita, K.; Manabe, Y. Development of junction temperature estimation system for light-emitting LED using pulsed-laser Raman scattering. J. Solid State Lighting 2015, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.C.; Park, J. Temperature Measurement of Visible Light-Emitting Diodes Using Nematic Liquid Crystal Thermography With Laser Illumination. IEEE Photonics Technol. Lett. 2004, 16, 1706–1708. [Google Scholar] [CrossRef]
- JEDEC Solid State Technology Association. Overview of Methodologies for the Thermal Measurement of Single- and Multi-Chip, Single- and Multi-PN- Junction Light-Emitting Diodes (LEDs)—JESD51-50; JEDEC Standards: Arlington, VA, USA, 2012. [Google Scholar]
- JEDEC Solid State Technology Association. Implementation of the Electrical Test Method for the Measurement of Real Thermal Resistance and Impedance of Light-Emitting Diodes with Exposed Cooling—JEDEC 51-51; JEDEC Standard: Arlington, VA, USA, 2012. [Google Scholar]
- Wu, B.; Lin, S.; Shih, T.M.; Gao, Y.; Lu, Y.; Zhu, L.; Chen, G.; Chen, Z. Junction-temperature determination in InGaN light-emitting diodes using reverse current method. IEEE Trans. Electron. Devices 2013, 60, 241–245. [Google Scholar] [CrossRef]
- Xi, Y.; Schubert, E.F. Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method. Appl. Phys. Lett. 2004, 85, 2163–2165. [Google Scholar] [CrossRef] [Green Version]
- Keppens, A.; Ryckaert, W.R.; Deconinck, G.; Hanselaer, P. High power light-emitting diode junction temperature determination from current-voltage characteristics. J. Appl. Phys. 2008, 104, 093104. [Google Scholar] [CrossRef]
- Roscam Abbing, F.D.; Pertijs, M.A.P. Light-emitting diode junction-temperature sensing using differential voltage/current measurements. In Proceedings of the IEEE Sensors, Limerick, Ireland, 28–31 October 2011; pp. 861–864. [Google Scholar]
- Della Corte, F.; Pangallo, G.; Carotenuto, R.; Iero, D.; Marra, G.; Merenda, M.; Rao, S. Temperature Sensing Characteristics and Long Term Stability of Power LEDs Used for Voltage vs. Junction Temperature Measurements and Related Procedure. IEEE Access 2020, 8, 43057–43066. [Google Scholar] [CrossRef]
- Iero, D.; Merenda, M.; Polimeni, S.; Carotenuto, R.; Della Corte, F.G. A Technique for the Direct Measurement of the Junction Temperature in Power Light Emitting Diodes. IEEE Sens. J. 2021, 21, 6293–6299. [Google Scholar] [CrossRef]
- Iero, D.; Merenda, M.; Polimeni, S.; Carotenuto, R.; Pezzimenti, F.; Rao, S.; Della Corte, F.G. Power LED junction temperature readout circuit based on an off-the-shelf LED driver. In Proceedings of the IEEE Sensors, Rotterdam, The Netherlands, 25–28 October 2020. [Google Scholar]
- Della Corte, F.G.; Pangallo, G.; Rao, S.; Carotenuto, R.; Iero, D.; Merenda, M.; Pezzimenti, F. Use of 4H-SiC-based diodes as temperature sensors. In Proceedings of the International Semiconductor Conference (CAS), Sinaia, Romania, 9–11 October 2019; pp. 71–74. [Google Scholar]
- Pangallo, G.; Carotenuto, R.; Iero, D.; Mallemace, E.D.; Merenda, M.; Rao, S.; Della Corte, F.G. A Direct Junction Temperature Measurement Technique for Power LEDs. In Proceedings of the 9th IEEE International Workshop on Applied Measurements for Power Systems, AMPS, Bologna, Italy, 26–28 September 2018. [Google Scholar]
- Brezeanu, G.; Draghici, F.; Craciunioiu, F.; Boianceanu, C.; Bernea, F.; Udrea, F.; Puscasu, D.; Rusu, I. 4H-SiC Schottky diodes for temperature sensing applications in harsh environments. Mater. Sci. Forum 2011, 679–680, 575–578. [Google Scholar] [CrossRef]
- Santra, S.; Guha, P.K.; Ali, S.Z.; Haneef, I.; Udrea, F. Silicon on Insulator Diode Temperature Sensor– A Detailed Analysis for Ultra-High Temperature Operation. IEEE Sens. J. 2010, 10, 997–1003. [Google Scholar] [CrossRef]
- Dutta, S.; Sinha, S.; Panda, A. Application of a Schottky Diode as a Temperature Sensor. J. Phys. Sci. 2015, 20, 189–193. [Google Scholar]
- Mansoor, M.; Haneef, I.; Akhtar, S.; De Luca, A.; Udrea, F. Silicon diode temperature sensors—A review of applications. Sens. Actuators A Phys. 2015, 232, 63–74. [Google Scholar] [CrossRef]
- Pristavu, G.; Brezeanu, G.; Pascu, R.; Drăghici, F.; Bădilă, M. Characterization of non-uniform Ni/4H-SiC Schottky diodes for improved responsivity in high-temperature sensing. Mater. Sci. Semicond. Process. 2019, 94, 64–69. [Google Scholar] [CrossRef]
- Acharya, Y.B.; Vyavahare, P.D. Study on the temperature sensing capability of a light-emitting diode. Rev. Sci. Instrum. 1997, 68, 4465–4467. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Topol, K.; Shahedipour-Sandvik, F.; Teetsov, J.; Sandvik, P.M.; LeBoeuf, S.E.; Ebong, A.; Kretchmer, J.W.; Stokes, E.B.; Arthur, S.; et al. Influence of defects on electrical and optical characteristics of GaN/InGaN-based light-emitting diodes. In Proceedings of the Solid State Lighting II, Seattle, WA, USA, 26 November 2002; Volume 4776, p. 105. [Google Scholar]
- Gacio, D.; Alonso, J.M.; Garcia, J.; Garcia-Llera, D.; Cardesin, J. Study on Passive Self-Equalization of Parallel-Connected LED Strings. IEEE Trans. Ind. Appl. 2015, 51, 2536–2543. [Google Scholar] [CrossRef]
- Pascu, R.; Pristavu, G.; Brezeanu, G.; Draghici, F.; Godignon, P.; Romanitan, C.; Serbanescu, M.; Tulbure, A. 60–700 K CTAT and PTAT Temperature Sensors with 4H-SiC Schottky Diodes. Sensors 2021, 21, 942. [Google Scholar] [CrossRef]
- Cree Inc. Cree® XLamp®. XQ-A LEDs Product Family Data Sheet. Available online: https://cree-led.com/media/documents/ds-XQA.pdf (accessed on 15 March 2021).
- Liu, D.; Yang, H.; Yang, P. Experimental and numerical approach on junction temperature of high-power LED. Microelectron. Reliab. 2014, 54, 926–931. [Google Scholar] [CrossRef]
- Zhu, H.; Lu, Y.; Wu, T.; Guo, Z.; Zhu, L.; Xiao, J.; Tu, Y.; Gao, Y.; Lin, Y.; Chen, Z. A Bipolar-Pulse Voltage Method for Junction Temperature Measurement of Alternating Current Light-Emitting Diodes. IEEE Trans. Electron. Devices 2017, 64, 2326–2329. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iero, D.; Merenda, M.; Carotenuto, R.; Pangallo, G.; Rao, S.; Brezeanu, G.; Corte, F.G.D. A Technique for Improving the Precision of the Direct Measurement of Junction Temperature in Power Light-Emitting Diodes. Sensors 2021, 21, 3113. https://doi.org/10.3390/s21093113
Iero D, Merenda M, Carotenuto R, Pangallo G, Rao S, Brezeanu G, Corte FGD. A Technique for Improving the Precision of the Direct Measurement of Junction Temperature in Power Light-Emitting Diodes. Sensors. 2021; 21(9):3113. https://doi.org/10.3390/s21093113
Chicago/Turabian StyleIero, Demetrio, Massimo Merenda, Riccardo Carotenuto, Giovanni Pangallo, Sandro Rao, Gheorghe Brezeanu, and Francesco G. Della Corte. 2021. "A Technique for Improving the Precision of the Direct Measurement of Junction Temperature in Power Light-Emitting Diodes" Sensors 21, no. 9: 3113. https://doi.org/10.3390/s21093113
APA StyleIero, D., Merenda, M., Carotenuto, R., Pangallo, G., Rao, S., Brezeanu, G., & Corte, F. G. D. (2021). A Technique for Improving the Precision of the Direct Measurement of Junction Temperature in Power Light-Emitting Diodes. Sensors, 21(9), 3113. https://doi.org/10.3390/s21093113