Vision-Based Road Rage Detection Framework in Automotive Safety Applications
Abstract
:1. Introduction
- 1
- Contact method: this method extracts physiological characteristics such as breathing, electrocardiogram (ECG), electroencephalogram (EEG), electromyography (EMG), etc.
- 2
- Contactless: this method analyses head movement, facial expressions and eye tracking.
2. Method
2.1. Pre-Processing
2.2. Pre-Trained Deep Learning Architecture for FER in the Wild
2.3. Road Rage Detection Module
3. Results and Discussion
3.1. Datasets
3.1.1. RAF-DB
3.1.2. AffectNet
3.1.3. KMU-FED
3.2. Experiments
3.3. Comparison with the State of the Art
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, W.; Añorve, V.; Tefft, B.C. American Driving Survey, 2014–2017 (Research Brief); AAA Foundation for Traffic Safety: Washington, DC, USA, 2019. [Google Scholar]
- World Health Organization. European Regional Status Report on Road Safety. 2019. Available online: https://www.euro.who.int/en/publications/abstracts/european-regional-status-report-on-road-safety-2019 (accessed on 19 January 2021).
- Brookhuis, K.A.; de Waard, D.; Janssen, W.H. Behavioural impacts of Advanced Driver Assistance Systems—An overview. Eur. J. Transp. Infrastruct. Res. 2001, 1, 245–253. [Google Scholar]
- Hamid, U.Z.A.; Zakuan, F.R.A.; Zulkepli, K.A.; Azmi, M.Z.; Zamzuri, H.; Rahman, M.A.A.; Zakaria, M. Autonomous emergency braking system with potential field risk assessment for frontal collision mitigation. In Proceedings of the 2017 IEEE Conference on Systems, Process and Control (ICSPC), Malacca, Malaysia, 15–17 December 2017; pp. 71–76. [Google Scholar]
- Akamatsu, M.; Green, P.; Bengler, K. Automotive Technology and Human Factors Research: Past, Present, and Future. Int. J. Veh. Technol. 2013, 2013. [Google Scholar] [CrossRef]
- Lin, N.; Zong, C.; Tomizuka, M.; Song, P.; Zhang, Z.; Li, G. An overview on study of identification of driver behavior characteristics for automotive control. Math. Probl. Eng. 2014, 2014. [Google Scholar] [CrossRef]
- Katsis, C.D.; Rigas, G.; Goletsis, Y.; Fotiadis, D.I. Emotion recognition in car industry. In Emotion Recognition: A Pattern Analysis Approach; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 515–544. [Google Scholar]
- Volvo. Volvo Driver Alert Control. Available online: https://stpi.it.volvo.com/STPIFiles/Volvo/FactSheet/DAS-W_Eng_02_305607417.pdf (accessed on 19 January 2021).
- Mercedes-Benz. Attention Assist. Early Warning for Driver Drowsiness. Available online: http://www.mbusa.com/mercedes/benz/safety#module-3 (accessed on 19 January 2021).
- Bosch. Driver Drowsiness Detection System. Available online: https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/driver-assistance-systems/driver-drowsiness-detection/ (accessed on 19 January 2021).
- Lexus. Driver Monitoring System. Available online: https://lexusenthusiast.com/2007/09/08/a-look-at-the-lexus-ls-600hls-driver-monitoring-system/ (accessed on 19 January 2021).
- Saab. Driver Attention Warning System. Available online: https://www.saabnet.com/tsn/press/071102.html (accessed on 19 January 2021).
- Subaru. Driver Monitoring System. Available online: https://www.subaru.com.au/driver-monitoring-system (accessed on 19 January 2021).
- Rosario, H.D.; Solaz, J.; Rodrguez, N.; Bergasa, L. Controlled inducement and measurement of drowsiness in a driving simulator. IET Intell. Transp. Syst. 2010, 4, 280–288. [Google Scholar] [CrossRef]
- Baek, H.J.; Lee, H.B.; Kim, J.S.; Choi, J.M.; Kim, K.K.; Park, K.S. Nonintrusive biological signal monitoring in a car to evaluate a driver’s stress and health state. Telemed. E Health 2009, 15, 182–189. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Yang, Z.; Ji, B.; Qiao, F.; Yang, Z. An active driver fatigue identification technique using multiple physiological features. In Proceedings of the 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, China, 19–22 August 2011; pp. 733–737. [Google Scholar]
- Rodriguez-Ibanez, N.; Garcia-Gonzalez, M.A.; Fernandez-Chimeno, M.; Ramos-Castro, J. Drowsiness detection by thoracic effort signal analysis in real driving environments. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6055–6058. [Google Scholar]
- Mardi, Z.; Ashtiani, S.N.; Mikaili, M. EEG-based drowsiness detection for safe driving using chaotic features and statistical tests. J. Med. Signals Sens. 2011, 1, 130–137. [Google Scholar]
- Abtahi, S.; Hariri, B.; Shirmohammadi, S. Driver drowsiness monitoring based on yawning detection. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, Binjiang, Hangzhou, China, 10–12 May 2011. [Google Scholar]
- Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Danisman, T.; Bilasco, I.M.; Djeraba, C.; Ihaddadene, N. Drowsy Driver Detection System Using Eye Blink Patterns. In Proceedings of the International Conference on Machine and Web Intelligence (ICMWI 2010), Algeries, Algeria, 4–5 October 2010; pp. 230–233. [Google Scholar]
- Park, S.; Pan, F.; Kang, S.; Yoo, C.D. Driver Drowsiness Detection System Based on Feature Representation Learning Using Various Deep Networks. In Proceedings of the Asian Conference on Computer Vision 2016, Taipei, Taiwan, 20–24 November 2016; pp. 154–164. [Google Scholar]
- Jabbar, R.; Al-Khalifa, K.; Kharbeche, M.; Alhajyaseen, W.; Jafari, M.; Jiang, S. Real-time Driver Drowsiness Detection for Android Application Using Deep Neural Networks Techniques. In Proceedings of the 9th International Conference on Ambient Systems, Networks, and Technologies (ANT 2018), Porto, Portugal, 8–11 May 2018. [Google Scholar]
- Daza, I.G.; Bergasa, L.M.; Bronte, S.; Yebes, J.J.; Almazán, J.; Arroyo, R. Fusion of Optimized Indicators from Advanced Driver Assistance Systems (ADAS) for Driver Drowsiness Detection. Sensors 2014, 14, 1106–1131. [Google Scholar] [CrossRef]
- Jang, S.-W.; Ahn, B. Implementation of Detection System for Drowsy Driving Prevention Using Image Recognition and IoT. Sustainability 2020, 12, 3037. [Google Scholar] [CrossRef] [Green Version]
- Alshaqaqi, B.; Baquhaizel, A.S.; Ouis, M.E.A.; Boumehed, M.; Ouamri, A.; Keche, M. Driver drowsiness detection system. In Proceedings of the 2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA), Algiers, Algeria, 12–15 May 2013. [Google Scholar]
- Trutschel, U.; Sirois, B.; Sommer, D.; Golz, M.; Edwards, D. PERCLOS: An Alertness Measure of the Past. In Proceedings of the Sixth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Lake Tahoe, CA, USA, 27–30 June 2011. [Google Scholar]
- Dua, H.K.; Goel, S.; Sharma, V. Drowsiness Detection and Alert System. In Proceedings of the 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida (UP), India, 12–13 October 2018. [Google Scholar]
- Jeon, M.; Walker, B.N.; Yim, J.-B. Effects of specific emotions on subjective judgment, driving performance, and perceived workload. Transp. Res. Part Traffic Psychol. Behav. 2014, 24, 197–209. [Google Scholar] [CrossRef]
- Gao, H.; Yüce, A.; Thiran, J.-P. Detecting emotional stress from facial expressions for driving safety. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014. [Google Scholar]
- Jeong, M.; Ko, B.C. Driver’s facial expression recognition in real-time for safe driving. Sensors 2018, 18, 4270. [Google Scholar] [CrossRef] [Green Version]
- Verma, B.; Choudhary, A. Deep Learning Based Real-Time Driver Emotion Monitoring. In Proceedings of the 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Madrid, Spain, 12–14 September 2018. [Google Scholar]
- Azman, A.; Raman, K.J.; Mhlanga, I.A.J.; Ibrahim, S.Z.; Yogarayan, S.; Abdullah, M.F.A.; Razak, S.F.A.; Amin, A.H.M.; Muthu, K.S. Real Time Driver Anger Detection. In Proceedings of the Information Science and Applications, Hong Kong, China, 25–27 June 2018; pp. 157–167. [Google Scholar]
- Naqvi, R.A.; Arsalan, M.; Rehman, A.; Rehman, A.U.; Loh, W.-K.; Paul, A. Deep Learning-Based Drivers Emotion Classification System in Time Series Data for Remote Applications. Remote Sens. 2020, 12, 587. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 21–26 July 2016; pp. 770–778. [Google Scholar]
- Reza, A.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. Vlsi Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Ekman, P. Basic emotions. In Handbook of Cognition and Emotion; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1999; Volume 98, Chapter 16; pp. 45–60. [Google Scholar]
- Hubel, D.H.; Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 1968, 195, 215–243. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Sepas-Moghaddam, A.; Etemad, A.; Pereira, F.; Correia, P.L. Facial emotion recognition using light field images with deep attention-based bidirectional LSTM. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 3367–3371. [Google Scholar]
- Hu, M.; Wang, H.; Wang, X.; Yang, J.; Wang, R. Video facial emotion recognition based on local enhanced motion history image and CNN-CTSLSTM networks. J. Vis. Commun. Image Represent. 2019, 59, 176–185. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Woo, K.J.; Hyeon, K.Y.; Bashar, M.R.; Rhee, P.K. Wild facial expression recognition based on incremental active learning. Cogn. Syst. Res. 2018, 52, 212–222. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE conference on computer vision and pattern recognition, Miami, FL, USA, 22–24 June 2009; pp. 248–255. [Google Scholar]
- Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, B.M.; Liang, J. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [Google Scholar] [CrossRef] [Green Version]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? arXiv 2014, arXiv:1411.1792. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Goodfellow, I.J.; Erhan, D.; Carrier, P.L.; Courville, A.; Mirza, M.; Hamner, B.; Cukierski, W.; Tang, Y.; Thaler, D.; Lee, D.-H.; et al. Challenges in representation learning: A report on three machine learning contests. In Proceedings of the International Conference on Neural Information Processing, Daegu, Korea, 3–7 November 2013; pp. 117–124. [Google Scholar]
- Giannopoulos, P.; Perikos, I.; Hatzilygeroudis, I. Deep learning approaches for facial emotion recognition: A case study on FER-2013. In Advances in Hybridization of Intelligent Methods; Springer: Cham, Switzerland, 2018; pp. 1–16. [Google Scholar]
- Georgescu, M.I.; Ionescu, R.T.; Popescu, M. Local learning with deep and handcrafted features for facial expression recognition. IEEE Access 2019, 7, 64827–64836. [Google Scholar] [CrossRef]
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the COMPSTAT’2010, Paris, France, 22–27 August 2010; pp. 177–186. [Google Scholar]
- Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 27–29 March 2017; pp. 464–472. [Google Scholar]
- Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S., Jr.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- Dudani, S.A. The distance-weighted k-nearest-neighbor rule. In IEEE Transactions on Systems, Man, and Cybernetics; IEEE: New York, NY, USA, 1976; pp. 325–327. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Li, S.; Deng, W. Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition. IEEE Trans. Image Process. 2018, 28, 356–370. [Google Scholar] [CrossRef]
- Mollahosseini, A.; Hasani, B.; Mahoor, M.H. Affectnet: A database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. 2017, 10, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Vo, T.H.; Lee, G.S.; Yang, H.J.; Kim, S.H. Pyramid with Super Resolution for In-the-Wild Facial Expression Recognition. IEEE Access 2020, 8, 131988–132001. [Google Scholar] [CrossRef]
- Zhao, S.; Cai, H.; Liu, H.; Zhang, J.; Chen, S. Feature Selection Mechanism in CNNs for Facial Expression Recognition. In Proceedings of the BMVC, Newcastle, UK, 3–6 September 2018; p. 317. [Google Scholar]
- Farzaneh, A.H.; Qi, X. Discriminant Distribution-Agnostic Loss for Facial Expression Recognition in the Wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 406–407. [Google Scholar]
- Florea, C.; Florea, L.; Badea, M.S.; Vertan, C.; Racoviteanu, A. Annealed Label Transfer for Face Expression Recognition. In Proceedings of the BMVC, Cardiff, UK, 9–12 September 2019; p. 104. [Google Scholar]
- Li, Y.; Lu, Y.; Li, J.; Lu, G. Separate loss for basic and compound facial expression recognition in the wild. In Proceedings of the Asian Conference on Machine Learning, PMLR, Nagoya, Japan, 17–19 November 2019; pp. 897–911. [Google Scholar]
- Hua, W.; Dai, F.; Huang, L.; Xiong, J.; Gui, G. HERO: Human emotions recognition for realizing intelligent Internet of Things. IEEE Access 2019, 7, 24321–24332. [Google Scholar] [CrossRef]
- Kollias, D.; Cheng, S.; Ververas, E.; Kotsia, I.; Zafeiriou, S. Deep neural network augmentation: Generating faces for affect analysis. arXiv 2020, arXiv:1811.05027. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, J.; Chen, S.; Shi, Z.; Cai, J. Facial motion prior networks for facial expression recognition. In Proceedings of the 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, Australia, 1–4 December 2019; pp. 1–4. [Google Scholar]
- Kervadec, C.; Vielzeuf, V.; Pateux, S.; Lechervy, A.; Jurie, F. Cake: Compact and accurate k-dimensional representation of emotion. arXiv 2018, arXiv:1807.11215. [Google Scholar]
- Jeong, M.; Park, M.; Ko, B.C. Intelligent driver emotion monitoring based on lightweight multilayer random forests. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki-Espoo, Finland, 22–25 July 2019; Volume 1, pp. 280–283. [Google Scholar]
Expression | Training | Validation | Testing |
---|---|---|---|
Anger | 3995 | 467 | 491 |
Disgust | 436 | 56 | 55 |
Fear | 4097 | 496 | 528 |
Happy | 7215 | 895 | 879 |
Sad | 4830 | 653 | 594 |
Surprise | 3171 | 415 | 416 |
Neutral | 4965 | 607 | 626 |
Total | 28,709 | 3589 | 3589 |
Predicted Label | Actual Label | Definition |
---|---|---|
Positive | Positive | True Positive (TP) |
Positive | Negative | False Positive (FP) |
Negative | Positive | False Negative (FN) |
Negative | Negative | True Negative (TN) |
Facial Expression | |||||||||
---|---|---|---|---|---|---|---|---|---|
Dataset | Anger | Disgust | Fear | Happy | Sad | Surprise | Neutral | Total | |
RAF-DB | Train | 705 | 717 | 281 | 4772 | 1982 | 1290 | 2524 | 12,271 |
Test | 162 | 160 | 74 | 1185 | 487 | 329 | 680 | 3068 | |
AffectNet | Train | 24,882 | 3803 | 6378 | 134,415 | 25,459 | 14,090 | 74,874 | 283,901 |
Test | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 3500 | |
KMU-FED | Train | 146 | 70 | 150 | 160 | 130 | 150 | N.A. | 806 |
Test | 50 | 50 | 50 | 50 | 50 | 50 | N.A. | 300 |
Lx | 100 | 500 | ||||||
---|---|---|---|---|---|---|---|---|
Yaw Angle | ||||||||
SVM | Acc (%) | 83.86 | 94.27 | 84.57 | 80.60 | 87.13 | 80.34 | |
Se (%) | 85.20 | 92.72 | 86.01 | 85.33 | 85.33 | 80.22 | ||
Sp (%) | 82.42 | 95.80 | 83.06 | 80.62 | 88.87 | 80.45 | ||
Pr (%) | 83.92 | 95.60 | 84.12 | 80.00 | 88.17 | 79.50 | ||
F-score (%) | 84.56 | 94.14 | 85.06 | 80.29 | 86.73 | 79.86 | ||
LR | Acc (%) | 82.98 | 88.45 | 83.77 | 78.48 | 84.83 | 78.13 | |
Se (%) | 82.04 | 85.40 | 82.81 | 77.04 | 83.11 | 76.25 | ||
Sp (%) | 83.96 | 91.74 | 84.77 | 80.04 | 86.68 | 80.22 | ||
Pr (%) | 84.22 | 91.79 | 84.88 | 80.60 | 86.96 | 81.14 | ||
F-score (%) | 83.11 | 88.48 | 83.83 | 78.78 | 84.99 | 78.62 | ||
kNN | Acc (%) | 82.10 | 89.68 | 82.72 | 78.31 | 85.19 | 78.22 | |
Se (%) | 83.39 | 87.26 | 83.48 | 77.44 | 83.12 | 77.38 | ||
Sp (%) | 80.73 | 92.16 | 81.92 | 79.14 | 87.18 | 79.03 | ||
Pr (%) | 82.12 | 91.91 | 82.91 | 78.00 | 86.22 | 78.08 | ||
F-score (%) | 82.75 | 89.53 | 83.19 | 77.72 | 84.64 | 77.73 |
Lx | 100 | 500 | ||||||
---|---|---|---|---|---|---|---|---|
Pitch Angle | ||||||||
SVM | Acc (%) | 86.77 | 94.27 | 85.58 | 80.03 | 87.13 | 79.23 | |
Se (%) | 86.39 | 92.72 | 83.25 | 80.48 | 85.33 | 79.02 | ||
Sp (%) | 87.17 | 95.80 | 88.20 | 79.58 | 88.87 | 79.46 | ||
Pr (%) | 87.30 | 95.60 | 88.80 | 79.42 | 88.17 | 80.05 | ||
F-score (%) | 86.84 | 94.14 | 85.94 | 79.95 | 86.73 | 79.53 | ||
LR | Acc (%) | 84.39 | 88.45 | 84.52 | 76.06 | 84.83 | 76.59 | |
Se (%) | 84.57 | 85.40 | 82.46 | 75.40 | 83.11 | 74.74 | ||
Sp (%) | 84.21 | 91.74 | 86.63 | 76.72 | 86.68 | 78.49 | ||
Pr (%) | 84.13 | 91.79 | 86.30 | 76.41 | 86.96 | 78.20 | ||
F-score (%) | 84.35 | 88.48 | 84.34 | 75.90 | 84.99 | 76.43 | ||
kNN | Acc (%) | 84.26 | 89.68 | 84.44 | 75.40 | 85.19 | 75.53 | |
Se (%) | 83.96 | 87.26 | 83.07 | 74.67 | 83.12 | 74.20 | ||
Sp (%) | 84.55 | 92.16 | 85.87 | 76.13 | 87.18 | 76.84 | ||
Pr (%) | 84.18 | 91.91 | 85.98 | 75.87 | 86.22 | 76.02 | ||
F-score (%) | 84.07 | 89.53 | 84.50 | 75.27 | 84.64 | 75.10 |
Methodology | Accuracy (%) |
---|---|
DLP-CNN [57] | 74.20 |
FSN [60] | 72.46 |
DDA loss [61] | 79.71 |
ALT [62] | 76.50 |
Separate loss [63] | 77.25 |
PSR [59] | 80.78 |
Our Method | 78.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, A.; Caroppo, A.; Manni, A.; Siciliano, P. Vision-Based Road Rage Detection Framework in Automotive Safety Applications. Sensors 2021, 21, 2942. https://doi.org/10.3390/s21092942
Leone A, Caroppo A, Manni A, Siciliano P. Vision-Based Road Rage Detection Framework in Automotive Safety Applications. Sensors. 2021; 21(9):2942. https://doi.org/10.3390/s21092942
Chicago/Turabian StyleLeone, Alessandro, Andrea Caroppo, Andrea Manni, and Pietro Siciliano. 2021. "Vision-Based Road Rage Detection Framework in Automotive Safety Applications" Sensors 21, no. 9: 2942. https://doi.org/10.3390/s21092942
APA StyleLeone, A., Caroppo, A., Manni, A., & Siciliano, P. (2021). Vision-Based Road Rage Detection Framework in Automotive Safety Applications. Sensors, 21(9), 2942. https://doi.org/10.3390/s21092942