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Abstract: In recent years, researchers of deep neural networks (DNNs)-based facial expression
recognition (FER) have reported results showing that these approaches overcome the limitations of
conventional machine learning-based FER approaches. However, as DNN-based FER approaches
require an excessive amount of memory and incur high processing costs, their application in various
fields is very limited and depends on the hardware specifications. In this paper, we propose a fast
FER algorithm for monitoring a driver’s emotions that is capable of operating in low specification
devices installed in vehicles. For this purpose, a hierarchical weighted random forest (WRF)
classifier that is trained based on the similarity of sample data, in order to improve its accuracy,
is employed. In the first step, facial landmarks are detected from input images and geometric
features are extracted, considering the spatial position between landmarks. These feature vectors
are then implemented in the proposed hierarchical WRF classifier to classify facial expressions.
Our method was evaluated experimentally using three databases, extended Cohn-Kanade database
(CK+), MMI and the Keimyung University Facial Expression of Drivers (KMU-FED) database, and its
performance was compared with that of state-of-the-art methods. The results show that our proposed
method yields a performance similar to that of deep learning FER methods as 92.6% for CK+ and
76.7% for MMI, with a significantly reduced processing cost approximately 3731 times less than that
of the DNN method. These results confirm that the proposed method is optimized for real-time
embedded applications having limited computing resources.

Keywords: facial expression recognition; deep neural networks; embedded application; ADAS;
weighted random forest

1. Introduction

Recognition of human emotion from images is an interesting research topic, the results of which
can be implemented in facial expression recognition (FER). Currently, the results of research on
automatic FER have been used in many applications such as human-computer interaction [1,2];
virtual reality (VR)- [3] and augmented reality (AR)- [4] based games [5,6]; customer marketing
and advertising; education [7]; and advanced driver assistant systems (ADASs) [8]. In particular,
FER is one of the most important factors of ADASs, because it can be used to detect driver fatigue
and, in conjunction with the rapidly developing intelligent vehicle technologies, assist safe driving.
Therefore, this paper is focused on FER that can facilitate safe driving by determining the psychological
state of the driver using his/her facial expression (FE).

Although FER has been studied for many years in the computer vision, it still presents many
challenges related to the complexity of facial expression; changes in facial pose and illumination
conditions; and occlusions and variations between individuals in terms of attributes such as age,
gender, ethnic background and personality. To overcome these challenges the research on FER
approaches has proceeded in the following three research directions.
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The first FER approach consists of action unit (AU)-based methods. AUs are defined as
the movement of the facial muscles and an FE is represented by the movements of several AUs.
In AU-based methods, a system that is pre-trained to recognize AUs detects them in an input image
and then determines the FE by means of decoding the detected AUs. However, as these methods
are based on invisible micro muscle movements, it is difficult to detect AUs accurately using only
the appearance information of the face. To detect many AUs correctly, these methods must include
classifiers for each AU or use multi-label classification, which requires an advanced computing
system [9,10].

The second FER approach utilizes feature representation. The processing in this approach
is composed of three steps: face and facial component detection, feature extraction and FE
classification. Expression classification utilizes pre-trained FE classifiers, such as support vector
machines (SVMs) [11–13], AdaBoost [14] and hidden Markov models (HMMs) [15], to achieve the
recognition results using the extracted features. Feature representation can also be divided into
two categories: appearance features and geometric features. Appearance features describe the
texture of the face using various feature descriptors, including a histogram of oriented gradients
(HoG) [16–18], local binary pattern (LBP) [11,13,19–21], scale invariant feature transform (SIFT) [13,20],
and Gabor filter-based texture information [1,19]. Geometric features describe the shape of the
face or the position of the facial components. Appearance features yield a better performance than
geometric features, however, geometric features are more robust to changes in face position, scale, size,
and head orientation.

In recent years, the third approach, deep neural networks (DNNs), has emerged as a general
approach to machine learning, yielding state-of-the-art results in many computer vision studies
that utilized the availability of big data [7]. In addition, improved results have been reported for
DNN-based FER methods as compared to conventional FER methods because of their ability to
construct discriminative features from learning tasks. In DNN-based FER methods, a variety of
versions of DNN have been applied, such as convolutional neural networks (CNNs), long-short
term memory (LSTM), generative adversarial networks (GANs) [1,22] and inception and ResNet
modules [23], according to the applications in which they are to be implemented. DNN-based methods
recognize FEs by combining detected AUs, rather than using overall facial features for FER [9,10].
For example, if a DNN detects some AUs from an image such as AU-1, AU-22, AU-25, and AU-26,
the system will classify this image as expressing an emotion of the ‘surprise’ category.

Although very deep or wide networks-based FER approaches usually perform reasonably well,
they still have a few problems related to processing time and memory consumption, which are
associated with the multitudinous parameters in the training and inference processes. However,
in most embedded systems, including intelligent vehicle systems, real-time processing of DNNs is a
heavy burden. Therefore, instead of a DNN, we propose an FER algorithm based on the proposed
hierarchical weighted random forest (WRF) classifier that is capable of operating in low specification
devices while achieving a comparable FER performance with a fast speed.

The remainder of this paper is structured as follows. We present an overview of the related
work on FER in Section 2. Section 3 provides the details of our proposed method in terms of feature
extraction and the classifier. Section 4 provides a comprehensive evaluation of the proposed method
through various experiments. Finally, the paper is concluded in Section 5.

2. Related Work

Automated FER methods have been widely studied for many years [7]. Because the most
important factor that determines an FER method’s performance is the use of the most discriminative
features, they can be divided into two categories, those using hand-crafted features and those using
features generated by a deep learning network.

The first hand-crafted features include appearance and geometric features. As mentioned in the
Introduction, HoG, LBP, SIFT and the Gabor filter are frequently employed as appearance feature
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descriptors. Chang and Chen [24] recognized FE by combining different AUs that were used for
describing the basic muscle movement of a human face. This method used the input vector that is
composed of facial characteristic points movements and two different neural network-based expression
classifiers including a radial basis function network and a multilayer perceptron network.

Zavaschi et al. [19] proposed a novel FER scheme that employs a combination of the Gabor
filter and LBP and SVM classifiers. Then a multi-objective genetic algorithm is used to search
for the best ensemble using as objective functions the minimization of both the error rate and the
size of the ensemble. Greche et al. [18] presented an FER based on three steps consisting of data
preparation, features extraction using HoG and template matching for classification using normalized
cross correlation. In this method, experimentation was carried out on CK+ datasets, and it gave 83.6%
accuracy on five FEs. Carcagni et al. [13] reported a comprehensive study on the application of the
HoG descriptor with an SVM classifier in FER. Luo et al. [21] used the LBP appearance features with
principal component analysis and an SVM classifier for FER.

In FER methods, the geometric features are defined using the locations and shapes of facial
components extracted from an input image, and the relationship between related facial components is
considered [25]. Therefore, most geometric feature-based methods include the major step of detecting
facial components using the active appearance model (AMM) [26] or the active shape-based model
(ASM) [27]. Choi et al. [28] proposed a technique for real-time recognition of FE which uses the
AAM [26] with second order minimization and a neural network. The high dimensional feature
vectors, which consist of a facial shape and texture, can be handled by a multi-layer perceptron
model. Tanchotsrinon et al. [29] presented a graph-based feature extraction method that consists of
three parts:(1) locating 14 points in the face region to extract graph-based features, (2) composing the
graph-based features defined by the Euclidean distances for edges connecting the 14 points and (3)
recognizing FE using neural networks with corresponding feature vectors. Suk et al. [12] presented
real-time FER for use in a mobile application. This method first extracts the neutral features from a
neutral face detected by an SVM and the mouth status. While it continues to update neutral features,
this method generates new dynamic features using the displacement between the most recent neutral
feature and the current feature if the face is recognized as having a non-neutral expression. Finally,
it returns the recognized resultant expression by SVM classifiers and the dynamic features. This method
showed experimental results with 86% of accuracy with 10-fold cross validation in 309 video samples of
the extended Cohn-Kanade Dataset CK+ dataset [30]. Perikos et al. [31] recognized FE using adaptive
neuro fuzzy inference systems. In this method, FEs detect facial deformations of specific regions such
as eyes, eyebrows and mouth, and extract characteristics such as locations, length, width, and shape.
Then, the feature vectors representing the deformations of the facial expressions are applied to adaptive
neuro fuzzy inference systems to recognize FEs. This method showed approximately 90% average
accuracy for Japanese female facial expressions (JAFFE) [32].

In summary, conventional feature extraction-based methods are suitable for real-time embedded
systems because they can quickly learn and they operate effectively with a small amount of data;
however, in terms of performance, they are inferior to DNN methods.

Recently, the use of features generated by deep learning networks has become the approach most
widely used in studies on FER. Mollahosseini et al. [33] proposed a new DNN architecture for FER
consisting of two convolutional layers, each followed by max pooling, and then four inception layers.
The network of this method is a single component architecture. So, it takes registered facial images as
the input and classifies them into either of the six basic or the neutral expressions. This method showed
experimental results with 93.2% accuracy for CK+ and 77.6% accuracy for the MMI database [34,35].
In addition, Hasani et al. [23] presented 3D convolution networks (3D CNNs) that consist of 3D
Inception-ResNet layers followed by an LSTM unit that together extract the spatial relations within
facial images, as well as the temporal relations between different frames in the video. Facial landmark
points are also used as inputs to the network which emphasizes the importance of facial components
rather than facial regions that may not contribute significantly to generating FEs. Liu et al. [36]
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combined deep metric loss and softmax loss in a unified framework with two fully connected layer
branches to alleviate the attribute variations introduced by different identities. A generalized adaptive
(N+M)-tuple clusters loss function together with an identity-aware hard-negative mining and online
positive mining scheme were proposed for identity-invariant FER.

Recently, generative adversarial networks (GANs) have shown successful results achieved by
means of a two-player game between a generator G and a discriminator D. Yang et al. [1] proposed
the de-expression residue learning (DeRL) method which has two learning processes: (1) learning for
the neutral face generation performed by conditional GANs, and (2) learning from the intermediate
layer of the generator to classify FEs. This learning procedure can capture the expressive component
of FEs that were recorded in the generative model. Zhang et al. [22] proposed a deep learning model
in which different poses and expressions are utilized jointly for simultaneous facial image synthesis
and pose-invariant FER based on GANs. The proposed GAN model automatically generates face
images with different expressions under arbitrary poses to enlarge and enrich the training set for
FER. Quantitative evaluations on Multi-PIE [37] and Static Facial Expressions in the wild (SFEW) [38]
datasets had 91.8% accuracy for the Multi-PIE and 26.58% accuracy for the SFEW dataset.

Unlike the above approaches that use overall face features, AU-based methods detect pre-defined
AUs and then decode specific expressions from the Facial Action Coding System (FACS). Recently,
AU-based methods have been applied to the deep learning approach. Zhao et al. [9] constructed
deep region and multi-label learning to detect AUs and recognize FEs by dividing the aligned face
images into 8 × 8 patches. This system showed a high AU detection performance which was achieved
by considering the correlations between AUs; however, the results relied on the face alignment,
and treating all blocks equally may degrade the importance of some regions. Liu et al. [10] proposed
AU-inspired deep networks (AUDNs) to explore a psychological theory that expressions can be
decomposed into multiple facial AUs. An AUDN consists of three processes: (1) a convolutional
layer and a max-pooling layer to learn the micro-action-pattern (MAP) representation, (2) feature
grouping to integrate correlated MAPs to produce mid-level semantics and (3) a multilayer learning
process to construct sub-networks for higher-level representations. The performance evaluation was
performed on seven expression categories including neutral using average accuracy, and it gave the
93.7% accuracy for CK+ and 75.85% for MMI database.

Although DNN-based FER is one of the most recently developed methods and achieves
outstanding results, this approach still requires an excessive amount of memory and incurs high
processing costs as the network is deep and wide. Therefore, conventional classification algorithms
are still being studied for implementation in real-time embedded systems because of their low
computational complexity and high degree of accuracy [7].

In the early versions of this paper [25], the feasibility of implementing FER in an embedded system
using a simple hierarchical random forest (RF) was demonstrated. However, unlike in Reference [25],
we introduce a new hierarchical structure that is constructed according to the similarity of facial
expression and a new algorithm for constructing WRF, as shown in Figure 1. The major contributions
of this paper are as follows:

• To generate the optimal split function of a tree, we propose using data similarity for information
gain instead of entropy.

• We improve the classification performance by changing the hierarchical structure of the classifier
and improve the WRF instead of using a general RF.

• In experiments in which the results of our study were compared with those of state-of-the-art
studies using various benchmark databases, the proposed method shows good performance with
a fast speed.

• The proposed method is successfully applied to the database consisting of images captured in
an actual driving environment, and we confirm that its FE accuracy is high despite changes in
various external environments.
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• Through the proposed FER method, we show the possibility to apply the proposed method
to the embedded systems such as intelligent vehicles entertainment, education, virtual reality,
and games without sacrificing accuracy.
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Figure 1. Overview of the proposed method for facial expression recognition. (a) the face region
and facial landmarks are extracted from the image; (b) two geometric features are extracted based on
the distance ratio and angle relations; (c) the hierarchical weighted random forest classifies the facial
expression (d).

3. Facial Expression Recognition Approach

3.1. System Overview

To reduce the burden of feature extraction in a real-time system, in our method we use compact
features reflecting the facial micro movement together with a fast and efficient classifier. For feature
extraction, we propose a concise geometric feature descriptor based on the spatial relations between
important face locations using the distance ratio and angle relations. For FE classification, we propose
the new hierarchical WRF classifier that is composed of an ensemble of decision trees to learn the
dynamic variation of FEs.

The major steps of this paper, together with an overview of the procedures of the method,
are shown in Figure 1. First, the facial region and landmarks are detected in an input image using
the face and landmark detector of DLib [39] (Figure 1a). DLib is an open source machine library that
provides a face detector and landmark detectors. After face detection, the trained facial landmark
detector of DLib is used to predict the location of 68 (x, y) -coordinates that map to facial structures on
the face. Second, the geometric features are constructed based on the spatial relations such as distance
ratio and angle relation between some specified facial landmarks (Figure 1b). The FE is recognized
using the hierarchical WRF which is hierarchically constructed according to the dissimilarity of FE
groups as shown in Figure 1c. The first WRF classifies fear, happiness and another expression group
and the second WRF classifies anger, disgust and sadness from the other group to achieve a more
precise classification. The final probability of an FE class is estimated by combination of each WRF’s
probability (Figure 1d). In this study, we evaluated the performance of our proposed algorithm using
the well-known extended Cohn-Kanade (CK+) [30], MMI [34,35] and the Keimyung University Facial
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Expression of Drivers (KMU-FED) databases which include six basic expressions (anger, disgust, fear,
happiness, sadness, and surprise).

3.2. Geometric Features

To recognize the facial expression in real time with limited computing resources, we use geometric
features, which require a lower processing cost than appearance features such as HoG or LBP features.
General geometric features for FE describe the shape of the face or the spatial relations between its
components. However, because they can change owing to the face rotation or scaling, to complement
the spatial relations we use the distance ratio and the angle relations between relative positions of
landmarks that are robust to face rotation and scaling.

As the distance ratio feature, we define two individual vectors vi, j of the pairs of landmarks {i, j}
and vj,k of the pairs of landmarks {j, k}, as shown in Figure 2. The spatial distance ratio is calculated
using the two vectors to complement the spatial relations which can change as a result of face rotation
or face scaling:

Distratio =
vi, j

vj,k
(1)
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The angle feature between three landmarks is extracted, as shown in Figure 2. The angle feature
of the three landmarks {i, j, k} is modelled as the angle relations:

Anglerelat = θ

(
vi,j

vj,k

)
(2)

where va,b and vb,c are vectors that point from landmark a to landmark b and landmark b to landmark
c respectively. The distance ratio and angle relations are sufficiently robust to changes due to face
rotation or face scaling.

An accurate feature descriptor should describe the features that discriminate various facial
expressions using as many landmarks as possible. However, some landmarks may even degrade the
FE classification performance. Therefore, we define influential landmarks that are located around the
mouth, chin and eye region to compose discriminative feature vectors for FEs, as shown in Figure 3.
By using a limited number of landmarks instead of all the landmarks, the proposed algorithm is able
to achieve a reduced processing cost as well as improved accuracy. As shown in Figure 3, we extract
84 dimensional distance ratios and 88 dimensional angle relations. These features are inputs to the
WRF classifier.
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3.3. Facial Expression Classification

3.3.1. Random Forest Classifier

An RF classifier is an ensemble learning method consisting of a number of decision trees,
where each tree is randomly grown with bootstrap aggregating or bagging in the training process [34].
Because an RF is based on randomizing techniques with regards to subset and feature selection while
growing the trees, it is known as a classifier that is robust to overfitting, and it generates a better
performance than SVM or AdaBoost-based methods [40,41].

In the training task, an RF decision tree extracts a subset S from the training sample data using
bagging. A binary decision tree is grown in a top-down induction, beginning with the root node.
At the i-th, node a subset Qi is split into subset QL

i and QR
i by the split function f (v) consisting of

randomly chosen feature vectors v and a threshold τ. The feature vectors and threshold value are
repeatedly created to determine an optimal split function. From among these, we choose an optimal
pair composed of a split function and a threshold that maximizes the information gain about the
corresponding node. This node split process is repeated until the maximum depth is reached or the
information gain is zero. At the end of this iteration, a leaf node has posterior probability and class
distribution p(c|l) for each class.

In the test process, sample data are inputs to all the trees of the trained RF classifier and then
they reach the leaf nodes of each tree. The final class distribution is generated by the ensemble of each
distribution of all the leaf nodes L = (l1, l2, . . . , lT). cm is selected as the final class ŷi of the input
sample if the final class distribution p(cm|L) has the maximum value:

ŷi = arg max
c

{
1
T

T

∑
t=1

P(ci|lt)
}

(3)

3.3.2. Data Similarity for Information Gain

In a conventional RF classifier, one decision tree is generated in a top-down manner starting from
the root node. The sample data of a parent node are separated into two subsets of child nodes based
on the optimal split function among several candidate split functions. The process of selecting the
optimal split function resembles searching an optimal information gain value that is calculated by
the entropy of the subsets of two child nodes. In general, entropy is used to evaluate information
gain, which is a method that uses the class distribution for sample data in each node. However,
as the entropy-based method for searching the optimal split function does not take into account the
characteristics of the values of the sample data but reflects only the class distribution, the classification
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accuracy can be degraded for data that have similar types of feature vectors for some classes. In our
distance ratio and angle relations-based feature vectors, we can observe that the data distribution
within each class is similar, but some classes even have a similar distribution for the feature vector
included in different classes.

In this study, we improved the classification accuracy by means of using a node splitting process
that considers the data similarity of the feature vectors. In other words, we can group similar sample
data in the current node using the data similarity of feature vectors in the node splitting process. As a
result of repeating this splitting process until it reaches the leaf nodes, the leaf nodes contain similar
data; this approach is naturally a means of creating a tree that can classify several classes. Although
there are two or more classes that have similar feature vectors in a leaf node, appropriate test results
can be obtained by using the class distribution in the leaf node. Therefore, by splitting a node based on
the data similarity, this decision tree can provide a very good performance for not only discriminative
but also non-discriminative input data among classes.

To construct a decision tree based on data similarity, the data similarity is extracted from variances
of values for each dimension of the feature vector, instead of using entropy as in the general RF classifier.

At an i-th node, a subset Qi =
{(

xj, yj
)∣∣j = 1, 2, . . . .N

}
is split into subsets QL

i =

{(xl , yl)|l = 1, 2, . . . .NL} and QR
i = {(xr, yr)|r = 1, 2, . . . .NR} by split function f (v) consisting

of randomly chosen feature vectors v and a threshold value τ. For i-th node splitting, we select a
split function with the maximum information gain from among several candidate split functions.
The information gain ∆Gi is easily calculated through the data similarity Si, Sil , Sir of each sample data
item in the i-th node and the left (l) and right (r) child nodes:

∆Gi =
N

∑
j=1

Si −
(
|NL|
|N| ·

NL

∑
l=1

Sil +
|NR|
|N| ·

NR

∑
r=1

Sir

)
(4)

where N indicates the number of the subsets Qi of the training data arriving at Node i and Nl and Nr

are the number of data of the left and right split nodes, respectively. The data similarity Sl is measured
using the between-class variance of the subset belonging to an arbitrary node. To achieve this, we first
estimate the between-class variance B(i) f

var for the f -th feature dimension in the i-th node using:

B(i) f
var =

C

∑
c=1

∣∣Qc
i

∣∣
|Qi|
·
(
µ f − µ

f
c

)2
(5)

where c is the class index, |Qi| is the number of subsets Qi at the i-th node and
∣∣Qc

i

∣∣ is the number of

subsets Qc
i that belong to class c. µ f and µ

f
c are the mean of all the values and mean of class c included

in the f -th feature dimension, respectively.
To evaluate the data similarity of all the feature vectors, we can use the sum of between-class

variances of the respective dimensions:

Si = ∑D
f=0 B(i) f

var (6)

3.3.3. Hierarchical Weighted Random Forest Classifier

As described in Section 3.3.1, the generalization performance of an RF classifier is good and its
processing time is fast as it is based on a simple arithmetic operation in the test task. However, an RF
depends on the number of decision trees and requires a certain amount of memory and CPU capacity.
Therefore, boosted RF [42] and WRF [43] were introduced into the classification system to maintain
the generality with a small number of decision trees when considering the fact that sequential training
constructs complementary decision trees for the training sample [44].

In the training task for the WRF classifier, the set of training sample data is divided into “in-of-bag”
(IOB) and “out-of-bag” (OOB) through the bagging process, as shown in Figure 4. In the example of
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the first dotted box of Figure 4, a decision tree is built based on the sample data of the IOB, whereas
an OOB subset is used to evaluate the classification ability of the tree learning from the IOB subset.
If the accuracy of a decision tree is smaller than a permitted loss (threshold, 0.5), this tree is removed.
However, if a decision tree is not removed, the weight of each tree is generated according to its accuracy,
estimated based on OOB. Because OOB data are not involved in the building of the tree, the weight
learning from this dataset can avoid over-fitting [45]. We can repeat the above procedure to generate
the T′ decision trees and the accuracy values of the remaining trees are utilized as the weights wt.
for each decision tree in the test task as:

ŷi = arg max
c

{
1
T′

T′

∑
t=1

wt·P(ci|lt)
}

(7)
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We employ the WRF classifier with data similarity to construct a feature that discriminates
between several FEs. In this study, we learned of two types of WRF classifiers separately using two
different feature vectors instead of aggregating them as one feature according to the experimental
results presented in Reference [44]. We extract the feature vectors from a newly input image and
input them into each corresponding classifier. Using the distance ratio and the angle relation vector,
the probabilities of an FE class are computed by ensemble averaging of each probability distribution of
all trees L = (l1, l2, . . . , lT′ ) using:

Pdistratio (CFE|L) =
1
T′

T′

∑
t=1

P(Cdistratio
FE |lt). (8)

Panglerelat
(CFE|L) =

1
T′

T′

∑
t=1

P(Canglerelat
FE |lt) (9)

Then, the final probability of an FE class is estimated by the weighted combination of each
WRF’s probability:

P(CFE|L) = w1·Pdistratio (CFE|L) + w2·Panglerelat
(CFE|L) (10)
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The appropriate coefficient of weights w1 and w2 can be adjusted according to the characteristics
of the FE data type. We set the weights w1 and w2 to 0.4 and 0.6, respectively, based on the experimental
results. The probabilities of the two classifiers are combined by the linear weighted sum method to
obtain the probabilities for each FE. After the overall processes of the two classifiers are complete,
the class having the highest probability is determined as the final FE of the input image. The number
of decision trees of each WRF is set to 200, which has been shown empirically to yield results and
computation times that are comparable with those of related methods [41,44].

In this paper, we propose a WRF classifier with hierarchical structure to achieve more accurate
classification. As shown in Figure 1, in the first level, the first WRF classifier is learned to distinguish
between fear, happiness and another expression group. This is because the three emotions of anger,
disgust and sadness have similar facial features and, therefore, they can be classified more precisely
in the second level. In the second level, the second WRF classifies anger, disgust and sadness from
the other group to achieve a more precise classification. The two types of WRF classifiers are learned
separately using two feature vectors. The performance comparison used to prove the efficiency of
hierarchical WRF is presented in experiment.

4. Experimental Results

A number of databases for evaluating FER performance in image sequences have been used
for comparative and extensive experiments. Among many FE-related databases, CK+, MMI, JAFFE,
Facial Expression Recognition (FER)-2013 [46], and Karolinska Directed Emotional Face (KDEF) [47]
composed of 2D images are the most frequently used databases in FER related studies. However,
this paper aims at recognizing the FEs of the driver differently from other researches. Therefore,
we conducted several comparative experiments on two well-known publicly-available FER databases,
CK+ and MMI, to evaluate the effectiveness of the proposed method. Since there is no database for
FER in the driving environment, we generated the KMU-FED database of images that captured the
driver’s FE using a near-infrared (NIR) camera in a real driving environment.

We first briefly describe the datasets used in the performance evaluation. Then we describe
the results using these datasets in comparison with those of other state-of-the-art methods. As the
evaluation measurement we used the accuracy, that is, the ratio of true outcomes (both true positive
and true negative) to the total number of cases examined.

All the experiments were conducted using an Intel Core i7 processor with 8 GB of RAM running
Microsoft Windows 10. In addition, all WRF approaches, including normal WRF and hierarchical WRF,
were executed based on the CPU, and the DNN-based state-of-the-art approaches were executed based
on a single Titan-X GPU.

4.1. Databases

(1) CK+ database

The extended Cohn-Kanade database (CK+) [30] is the database most widely used in FER.
This database contains 327 image sequences from 118 subjects and FE labels based on FACS. These
image sequences start from the neutral state and end at the apex expression. All the sequence images
include the facial landmarks, FACS code, and emotion labels. The emotion labels are categorized into
seven emotions: anger, contempt, disgust, fear, happy, sadness, and surprise. In our experiments
we used six emotions, omitting the contempt emotion, to allow a comparison of our method with
other methods that are focused on six basic expression classes. We performed fivefold cross validation
and measured the accuracy. The images have pixel resolutions of 640 × 480 and 640 × 490 with 8-bit
precision for gray-scale values.
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(2) MMI database

The MMI database [34,35] contains 213 image sequences, of which 205 sequences with frontal
view faces of 31 subjects were used in our experiment. These image sequences start from the neutral
state one of the six basic facial expressions, then go to the apex and end at the neutral state again.
Since this database does not provide the location of the peak frame, we used three randomly collected
peak frames with the provided six basic emotion labels. We also used the facial landmarks generated
by Dlib, because this database does not provide actual positions of the facial landmarks. For the
experiments, the database was divided into 10 groups for person-independent 10fold cross validation.
We used the same evaluation method as for the CK+ database. The original size of each facial image is
720 pixels × 576 pixels.

(3) KMU-FED database

To verify the effectiveness of the proposed method in a real driving environment, we introduce
a new benchmark dataset, called the KMU-FED database, for FER in an actual driving environment
including problems that may occur on a real-life road. To construct the dataset, we captured benchmark
dataset sequences in a real vehicle driving environment with an NIR camera. The KMU-FED database
consists of drivers’ FEs captured using an NIR camera installed on the dashboard or steering wheel.
It contains 55 image sequences from 12 subjects which include various changes in illumination
(front, left, right and back light) and partial occlusions caused by hair or sunglasses. As when using
the other databases, the cross validation method was used for algorithm evaluation when using
KMU-FED. As no experimental results for the KMU-FED database from previous research studies
exist, we measured and analysed only the accuracy of the proposed method. The images have pixel
resolutions of 1600 pixels × 1200 pixels. The KMU-FD database of the full images is provided on our
Webpage [48].

4.2. Facial Expression Recognition Performance Evaluation

To verify the effectiveness of the proposed FER method, we compared its performance with that of
six state-of-the-art approaches that use either conventional algorithms or DNNs: (1) a real-time
mobile FER [12] for a mobile application which uses dynamic features with an SVM classifier;
(2) the AlexNets [49]-based FER approach which uses traditional CNN layered architecture; (3) a 3D
CNN-based approach with deformable facial action part constraints (3DCNN-DAP) [36]; (4) a DNN
that uses multiple inception layers [33]; (5) the Inception-ResNet (3DIR) network [23] which extends
the well-known 2D Inception-ResNet module with LSTM; (6) an identity-aware FER that uses an
adaptive deep metric learning as the (N+M)-tuple cluster loss [50]; (7) the proposed WRF which does
not use a hierarchy structure (single-WRF); (8) the proposed hierarchical WRF with normal information
gain (Proposed hierarchical WRF+Info.Gain), and the proposed hierarchical WRF with data similarity
for information gain (Proposed hierarchical WRF+Data.Sim).

In Table 1, the two DNN-based methods, DNN [33] and Inception-ResNet and LSTM [23],
produced a better FER performance than the other methods for the two datasets CK+ and MMI.
However, as compared to the proposed algorithm, the performance difference is very low at 0.6% for
CK + and 0.9–1.2% for MMI. The accuracy of AlexNets [49] and the 3DCNN-DAP [36] methods was
lower than that of the proposed method by approximately 0.4% and 0.2% for CK+ and 20.7% and
13.3% for MMI, respectively. From the experimental results, we can see that the performance of our
method (Proposed hierarchical WRF+Data.Sim) is similar to or better than that of a general shallow
DNN, although it is slightly lower than that of a wide and deep DNN. Single-WRF’s performance
is lower than that of hierarchy WRF, but its performance is better than that of the other shallow
DNNs. Proposed hierarchical WRF+info.Gain has a 1.26% lower performance than Single-WRF (using
Data.Sim), and 1.02% lower performance than Proposed hierarchical WRF+Data.Sim. From this result,
we found that we can improve performance by using data similarity-based information gain rather
than general entropy-based information gain to determine the split function of the tree node.
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However, DNN-based methods are not suitable for low-specification systems such as intelligent
vehicles because they require a lightweight algorithm that can run on CPUs instead of high-end GPUs
to run in real time. Therefore, by means of additional experiments, we prove the efficiency of the
proposed algorithm in terms of required memory (the number of parameters) and computational time
(the number of operations).

Table 1. Comparison of the proposed method with state-of-the-art methods 1.

Comparison Methods
Accuracy (%)

CK+ MMI

Real-time mobile FER [12] 85.5 -
AlexNets [49] 92.2 56.0

3DCNN-DAP [36] 92.4 63.4
DNN [33] 93.2 77.9

Inception-ResNet and LSTM [23] 93.2 77.6
Adaptive Deep Metric Learning [50] - 78.5

Single-WRF 92.2 70.9
Proposed hierarchical WRF+Info.Gain 90.9 69.7
Proposed hierarchical WRF+Data.Sim 92.6 76.7

1 Recognition performances of comparison methods are adapted from individual papers.

4.3. Comparison of Parameter Numbers and Operations

In a real-time system, the number of parameters and the number of operations for a classifier
are very important factors. Therefore, we compared the number of parameters and operations with
the two DNN-based methods, two DNN model compression methods, and the proposed method
(including feature extraction) using CK+ dataset. Among the DNN model compression techniques,
MobileNet [51] was based on depthwise separable convolutions to reduce the number of parameters
and operations. In this experiment, we set the width multiplier α as 0.5 and reduced image resolution
ρ to 160 × 160 for MobileNet. The second method, SqueezeNet [52], employed three main strategies
when designing CNN architectures such as replacing 3 × 3 filters with 1 × 1 filters, decreasing the
number of input channels to 3 × 3 filters, and downsampling late in the network.

In this experiment, the proposed method was executed based on the CPU, and two CNN-based
compression approaches were executed based on a single Titan-X GPU.

As shown in Table 2, it is confirmed that the proposed method requires a considerably smaller
number of parameters and operations than general AlexNets [49] and a DNN-based method [33].
In particular, the number of parameters of the proposed method is approximately 244 times smaller
than that of AlexNets [49] and the number of operations is 3731 times less than that of the DNN
method [33]. The results show that although the accuracy of the proposed method is slightly degraded
as compared to that of the deep and wide DNN-based method, the amount of computation and the
amount of memory required are considerably smaller.

Table 2. Comparison of the number of parameters and operations for the proposed method and a deep
neural network-based approach using the CK+ database.

Methods Accuracy (%) No. of Parameters (M) No. of Operations (M)

AlexNets [49] 85.5 61 720
DNN [33] 93.2 9 25

MobileNet [51] 92.1 1.32 76
SqueezeNet [52] 89.1 1.25 1700

Proposed method 92.6 0.25 0.0067

In contrast, MobileNet [51] is 6.6% better than AlexNet [49] while being 45 times smaller and
uses 9.4 times less computation than AlexNet. It is also 4% better than SqueezeNet [52] at about the
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same size and uses 22.3 times less computation. Compared with MobileNet [51] and SqueezeNet [52],
the accuracy of the proposed method increased by 0.5–3.5%, but the number of parameters is about
5.3–5 times smaller and operations are 11,343–253,731 times reduced. Because the proposed method
does not use all the parameters and it compares only a few specific nodes while growing the tree,
the computation is very small.

From the results, we can confirm that the proposed method constitutes an optimized algorithm
for recognizing the FE of a real-time embedded system such as an intelligent vehicle.

4.4. Expression Recognition Results

To determine whether the proposed method distinguishes each of the six FEs, we constructed
confusion matrices for the CK+ and MMI databases, respectively, as shown in Figure 5. In Figure 5,
(a) the highest performance was for surprise and the lowest performance was for sadness. The reason
for this result is that the surprise FE change is relatively large, whereas the sadness has a similar FE
with anger or disgust in the CK + database. In the case of the MMI database, the highest performance
was for happiness and the lowest performance was for fear. The fear expression was frequently
misjudged as the surprise or sadness expression, which is in contrast to the results in the case of the
CK+ database. In summary, the classification performance for most of the FEs was similar, with the
exception of the sadness expression in the case of CK+, and the fear expression in the case of MMI
based on the confusion matrices. The main reason for the lower accuracy for these three FEs was that
they involve similar movement of facial muscles or several important local features were lost because
of faulty localization of landmarks.
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Figure 6 shows the confusion matrix of FE performance obtained using the proposed method and
the KMU-FED database. Similar to the results in Figure 5, happiness has the highest performance at
99.5%. In contrast, the lowest FE performance was for disgust at 87.5%. Although KMU-FED was
captured in an actual driving environment including problems that may occur in a real-life road,
the overall accuracy yielded the best performance among the three databases at 94.7% versus 92.6% for
CK+ and 76.7% for MMI. This is because each image was taken with an NIR camera and it has even
brightness with a high resolution of 1600 pixels × 1200 pixels.

Figure 7 shows the FER results in a moving vehicle using the KMU-FED database. From the results,
we know that the proposed algorithm recognizes FE correctly, although the intensity of the drivers’
image varies according to the degree of front, side and back sunlight, and in some images partial
occlusions caused by hair or sunglasses are present. However, the proposed algorithm sometimes
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incorrectly recognized some FEs when landmark detectors lost the correct position because of fast face
movements or abrupt changes of pose. Videos of the full results are provided on our Webpage [48].
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5. Conclusions

In this paper, we presented a new FER method based on geometric features and the hierarchical
WRF for real-time embedded systems, especially those of intelligent vehicles. As the initial step
for building a real-time system, we first limited the number of landmarks used for generating
geometric features instead of using all the landmarks. For the second step, we proposed a hierarchical
WRF classifier to distinguish the FEs more precisely on two levels. In addition, because no
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appropriate dataset existed for FER that considers real outdoor driving situations, including the
various illumination changes that occur, we generated a new benchmark dataset, KMU-FED, using
an NIR camera to capture the images. A previous dataset was used as a reference. The experimental
results show that the results of the proposed method without using a GPU are similar to those of
the deep and wide DNN-based state-of-the-art FER approaches. Moreover, it was proved that the
proposed method requires a low amount of memory and computing operations as compared to
DNN-based approaches. Therefore, we confirm that the proposed FER method is applicable not only
in the embedded systems of intelligent vehicles, but also in various other fields, such as entertainment,
education, virtual reality, and games.

In future work, we plan to improve our algorithm to reduce the false recognition rate when the
face is rotated or partially occluded by objects. Moreover, a field test should be conducted with a
programmed embedded board in a real driving environment. Finally, changes in facial expressions
vary according to whether the subject is a child or an adult and according to the race of the subject,
even for the same emotions; therefore, we will develop a new FER algorithm that can distinguish the
FEs of varying subjects.

Author Contributions: M.J. performed the experiments and wrote the paper; B.C.K. conceived and designed
the algorithm.

Funding: This research was supported by the Scholar Research Grant of Keimyung University in 2018, partially
supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (2016R1D1A1A09916581).
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