Towards a Combined Use of Geophysics and Remote Sensing Techniques for the Characterization of a Singular Building: “El Torreón” (the Tower) at Ulaca Oppidum (Solosancho, Ávila, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Ulaca Oppidum (Ávila, Spain)
2.2. Integrative Characterization of “El Torreón” by Means of Remote Sensing and Geophysical Approaches
2.2.1. Aerial Photogrammetry
2.2.2. Geophysical Methods
Magnetometry
- -
- Mobile unit (walking displacement mode), GEM Gsm-19 proton Overhauser magnetometer (0.022 nT of sensitivity) with internal global navigation satellite system (GNSS) of simultaneous register of the magnetic field. Measurement range of 20,000 to 120,000 nT and sampling interval of 0.2 s.
- -
- Base (whose coordinates are known), potassium magnetometer, GEM Gsmp-40, with a sensitivity of 0.002 nT and a measurement range of 20,000 to 100,000 nT, with a sampling interval of 1 s. This is employed for any daytime corrections in the mobile unit when required.
- -
- Preprocessing: the aim is to correct the errors in the signal associated with data acquisition (sudden movements and external sources). After this phase, the daytime correction is also performed.
- -
- Processing: geological characterization of the ground based on the signal treatment through Voxi Earth Modelling algorithm of Oasis Montaj Software.
Ground Penetration Radar (GPR)
3. Results
3.1. Definition of the External Geometry
3.1.1. Characterization at an Intra-Site Scale (around the Ruined Building)
3.1.2. Characterization at Feature Scale (Detailed Model)
3.2. Inner Characterization of “El Torreón”
3.2.1. Magnetometry
3.2.2. Ground Penetrating Radar
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teixidó, M.T.; Peña, J.A. The Utility of Geophysical Models in Archaeology: Illustrative Case Studies. In Archaeogeophysics; Springer: Cham, Switzerland, 2019; pp. 169–181. [Google Scholar]
- Gaffney, C.; Gater, J.; Saunders, T.; Adcock, J. D-Day: Geophysical investigation of a World War II German site in Normandy, France. Archaeol. Prospect. 2004, 11, 121–128. [Google Scholar] [CrossRef]
- Walker, R.; Gaffney, C.; Gater, J.; Wood, E. Fluxgate gradiometry and square array resistance survey at Drumlanrig, Dumfries and Galloway, Scotland. Archaeol. Prospect. 2005, 12, 131–136. [Google Scholar] [CrossRef]
- Kvamme, K.L. Multidimensional prospecting in North American great plains village sites. Archaeol. Prospect. 2003, 10, 131–142. [Google Scholar] [CrossRef]
- Kvamme, K.L. Integrating multiple geophysical datasets. In Remote Sensing in Archaeology; Springer: New York, NY, USA, 2006; pp. 345–374. [Google Scholar]
- Kvamme, K.L.; Johnson, J.K.; Haley, B.S. Multiple methods surveys: Case studies. In Remote Sensing in Archaeology: An Explicitly North American Perspective; University Alabama Press: Tuscaloosa, AL, USA, 2006; pp. 251–268. [Google Scholar]
- Pro, C.; Caldeira, B.; de Tena, M.T.; Charro, C.; Oliveira, R.J.; Borges, J.F.; Mayoral, V. Exploring the Consistency of Data Collected in Archaeological Geophysics: A Case Study from the Iron Age Hillfort of Villasviejas del Tamuja (Extremadura, Spain). Remote Sens. 2020, 12, 1989. [Google Scholar] [CrossRef]
- Hao, H.; Qiang, L.; Jun, W.; Jianjie, C.; Xiang, Y. Kriging-based study on the visualization of magnetic method data. In Proceedings of the 2012 International Conference on Image Analysis and Signal Processing, Huangzhou, China, 9–11 November 2012; pp. 1–6. [Google Scholar]
- Mayoral Herrera, V.; Charro Lobato, C.; Salgado Carmona, J.A.; Pro Muñoz, C.; de Tena Rey, M.T.; Chapa Brunet, T.; Vallés Iriso, J.; Terrón López, J.M.; Quirós Rosado, E. Radiography of an Iron Age hillfort: Non-invasive archaeology in the settlement of Villasviejas del Tamuja (Botija, Cáceres). Trab. De Prehist. 2019, 76, 303–322. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, R.B.; Bertók, G.; Bácsmegi, G. Integrated prospection methods to define small-site settlement structure: A case study from Neolithic Hungary. Archaeol. Prospect. 2013, 20, 1–10. [Google Scholar] [CrossRef]
- I-Mahdi, H.A. Astudy and Analysis of Geomagnetic Field By using Model of International Geomagnetic Reference Field (IGRF-2000). Ibn Al-Haitham J. Pure Appl. Sci. 2017, 19, 29–37. [Google Scholar]
- Gabler, M.; Trinks, I.; Nau, E.; Hinterleitner, A.; Paasche, K.; Gustavsen, L.; Neubauer, W. Archaeological Prospection with Motorised Multichannel Ground-Penetrating Radar Arrays on Snow-Covered Areas in Norway. Remote Sens. 2019, 11, 2485. [Google Scholar] [CrossRef] [Green Version]
- Conyers, L.B.; Goodman, D. Ground-Penetrating Radar: An Introduction for Archaeologist; AltaMira Press: Lanham, MD, USA, 1997; pp. 149–194. [Google Scholar]
- Maté-González, M.Á.; Sánchez-Aparicio, L.J.; Sáez Blázquez, C.; Carrasco García, P.; Álvarez-Alonso, D.; de Andrés-Herrero, M.; García-Davalillo, J.C.; González-Aguilera, D.; Hernández Ruiz, M.; Jordá Bordehore, L.; et al. On the Combination of Remote Sensing and Geophysical Methods for the Digitalization of the San Lázaro Middle Paleolithic Rock Shelter (Segovia, Central Iberia, Spain). Remote Sens 2019, 11, 2035. [Google Scholar] [CrossRef] [Green Version]
- Martín Nieto, I.; Farfán Martín, A.; Sáez Blázquez, C.; González-Aguilera, D.; Carrasco, P.; Vasco, E.F.; García, J.C. Use of 3D electrical resistivity tomography to improve the design of low enthalpy geothermal systems. Geothermics 2019, 79, 1–13. [Google Scholar] [CrossRef]
- Sáez Blázquez, C.; Carrasco García, P.; Martín Nieto, I.; Maté-González, M.Á.; Farfán Martín, A.; González-Aguilera, D. Characterizing Geological Heterogeneities for Geothermal Purposes through Combined Geophysical Prospecting Methods. Remote Sens. 2020, 12, 1948. [Google Scholar] [CrossRef]
- Torres-Martínez, J.F.; Teichner, F.; Fernández-Götz, M.; Vallés Iriso, J. Resultados de las prospecciones geomagnéticas desarrolladas en el oppidum de Monte Bernorio (Pomar de Valdivia, Palencia). Trab. De Prehist. 2016, 73, 365–376. [Google Scholar] [CrossRef] [Green Version]
- El-Qady, G.; Metwaly, M.; Drahor, M.G. Geophysical Techniques Applied in Archaeology. In Archaeogeophysics; Springer: Cham, Switzerland, 2019; pp. 1–25. [Google Scholar]
- El-Hakim, S.F.; Beraldin, J.A.; Picard, M.; Godin, G. Detailed 3D reconstruction of large-scale heritage sites with integrated techniques. IEEE Comput. Graph. Appl. 2004, 24, 21–29. [Google Scholar] [CrossRef]
- Luhmann, T.; Chizhova, M.; Gorkovchuk, D. Fusion of UAV and Terrestrial Photogrammetry with Laser Scanning for 3D Reconstruction of Historic Churches in Georgia. Drones 2020, 4, 53. [Google Scholar] [CrossRef]
- Šedina, J.; Housarová, E.; Raeva, P. Using RPAS for the detection of archaeological objects using multispectral and thermal imaging. Eur. J. Remote Sens. 2019, 52, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Salgado Carmona, J.Á.; Quirós, E.; Mayoral, V.; Charro, C. Assessing the potential of multispectral and thermal UAV imagery from archaeological sites. A case study from the Iron Age hillfort of Villasviejas del Tamuja (Cáceres, Spain). J. Archaeol. Sci. Rep. 2020, 31, 102312. [Google Scholar]
- Costanzo, A.; Pisciotta, A.; Pannaccione Apa, M.I.; Bongiovanni, S.; Capizzi, P.; D’Alessandro, A.; Martorana, R. Integrated use of unmanned aerial vehicle photogrammetry and terrestrial laser scanning to support archaeological analysis: The Acropolis of Selinunte case (Sicily, Italy). Archaeol. Prospect. 2020. [Google Scholar] [CrossRef]
- Verhoeven, G. Taking computer vision aloft–archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeol. Prospect. 2011, 18, 67–73. [Google Scholar] [CrossRef]
- Pierdicca, R.; Malinverni, E.S.; Frontoni, E.; Colosi, F.; Orazi, R. 3D visualization tools to explore ancient architectures in South America. Virtual Archaeol. Rev. 2016, 7, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Fernández, A.; Benito-Calvo, A.; Campaña, I.; Ortega, A.I.; Karampaglidis, T.; de Castro, J.M.B.; Carbonell, E. 3D monitoring of Paleolithic archaeological excavations using terrestrial laser scanner systems (Sierra de Atapuerca, Railway Trench sites, Burgos, N Spain). Digit. Appl. Archaeol. Cult. Herit. 2020, 19, e00156. [Google Scholar] [CrossRef]
- Doneus, M. Openness as visualization technique for interpretative mapping of airborne lidar derived digital terrain models. Remote Sens. 2013, 5, 6427–6442. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Aparicio, L.J.; Mora, R.; Conde, B.; Maté-González, M.Á.; Sánchez-Aparicio, M.; González-Aguilera, D. Integration of a Wearable Mobile Mapping Solution and Advance Numerical Simulations for the Structural Analysis of Historical Constructions: A Case of Study in San Pedro Church (Palencia, Spain). Remote Sens. 2021, 13, 1252. [Google Scholar] [CrossRef]
- Matoušková, E.; Pavelka, K.; Smolík, T. Earthen Jewish Architecture of Southern Morocco: Documentation of Unfired Brick Synagogues and Mellahs in the Drâa-Tafilalet Region. Appl. Sci. 2021, 11, 1712. [Google Scholar] [CrossRef]
- Sabina, J.Á.R.; Valle, D.G.; Ruiz, C.P.; García, J.M.M.; Laguna, A.G. Aerial Photogrammetry by drone in archaeological sites with large structures. Methodological approach and practical application in the medieval castles of Campo de Montiel. Virtual Archaeol. Rev. 2015, 6, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Cowley, D.C.; Moriarty, C.; Geddes, G.; Brown, G.L.; Wade, T.; Nichol, C.J. UAVs in Context: Archaeological Airborne Recording in a National Body of Survey and Record. Drones 2018, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- O’Driscoll, J. Landscape applications of photogrammetry using unmanned aerial vehicles. J. Archaeol. Sci. Rep. 2018, 22, 32–44. [Google Scholar] [CrossRef]
- Torres-Martínez, J.A.; Seddaiu, M.; Rodríguez-Gonzálvez, P.; Hernández-López, D.; González-Aguilera, D. A multi-data source and multi-sensor approach for the 3D reconstruction and web visualization of a complex archaelogical site: The case study of “Tolmo De Minateda”. Remote Sens. 2016, 8, 550. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Hernandez, J.; González-Aguilera, D.; Rodríguez-Gonzálvez, P.; Mancera-Taboada, J. Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry: An effective, low-cost tool for archaeological applications. Archaeometry 2015, 57, 128–145. [Google Scholar] [CrossRef]
- Pepe, M. A survey by Airborne Laser Scanner of open large structure: A case study of Pompeii Amphitheatre. ARPN J. Eng. Appl. Sci. 2017, 12, 1–11. [Google Scholar]
- Anastasiades, K.; Hermon, S.; Amico, N.; Iannone, G.; Nys, K. Post-Excavation Analysis in Archaeology Using 3D-Technology: The Case Study of Hala Sultan Tekke. In Proceedings of the 40th Conference in Computer Applications and Quantitative Methods in Archaeology, Southampton, UK, 26–30 March 2012. [Google Scholar]
- Mariné, M. El castro de Ulaca (Solosancho, Ávila): Cien años de gestión del patrimonio arqueológico. In Homenaje al profesor Carlos Posac Mon (III); Instituto de Estudios Ceutíes: Ceuta, Spain, 1998; pp. 381–395. [Google Scholar]
- Mariné, M. De cerro “del Castillo” a castro celta de “Ulaca” (Villaviciosa, Solosancho, Ávila). Boletín Real Acad. Hist. 2017, CCXIV(III), 407–426. [Google Scholar]
- Ballesteros, E. Estudio Histórico de Ávila y su Territorio; Manuel Sarachaga: Ávila, Spain, 1896. [Google Scholar]
- Gómez-Moreno, M. Catálogo Monumental de la Provincia de Ávila; Ministerio de Cultura-Institución Gran Duque de Alba: Ávila, Spain, 1983. [Google Scholar]
- Ruiz Zapatero, G. Guía del castro de Ulaca. Solosancho, Ávila; Institución Gran Duque de Alba: Ávila, Spain, 2005. [Google Scholar]
- Ruiz Zapatero, G.; Álvarez-Sanchís, J.R. Ulaca: La “Pompeya” vettona. Rev. De Arqueol. 1999, 216, 36–47. [Google Scholar]
- Almagro-Gorbea, M.; Álvarez-Sanchís, J.R. La sauna de Ulaca: Saunas y baños iniciáticos en el mundo céltico. Cuad. De Arqueol. De La Univ. De Navar. 1993, 1, 177–253. [Google Scholar]
- Álvarez-Sanchís, J.R.; Marín, C.; Falquina, A.; Ruiz Zapatero, G. El oppidum vettón de Ulaca (Solosancho, Ávila) y su necrópolis. In Arqueología Vettona. La Meseta Occidental en la Edad del Hierro; Álvarez-Sanchís, J.R., Ed.; Museo Arqueológico Regional: Alcalá de Henares, Spain, 2008; pp. 338–361. [Google Scholar]
- Rodríguez-Hernández, J. Poder y Sociedad: El oeste de la Meseta en la Edad del Hierro; Institución Gran Duque de Alba: Ávila, Spain, 2019. [Google Scholar]
- Collis, J. Hill-Fort Study Group, Visit to Ávila, Spain, April 20th–23rd 2004: Guide; Hill-Fort Study Group: Oxford, UK, 2004. [Google Scholar]
- Lantier, R.; Breuil, H. Villages Pré-romains de la Péninsule Ibérique. Rev. Archéol. 1930, 32, 209–216. [Google Scholar]
- Posac Mon, C. Solosancho (Ávila). Not. Arqueol. Hisp. 1953, I, 63–74. [Google Scholar]
- Gutiérrez Palacios, A. Resumen de la campaña de excavaciones de 1950 en Ulaca (Solosancho). Not. Arqueol. Hisp. 1955, II, 195–196. [Google Scholar]
- Álvarez-Sanchís, J.R. Los Señores del Ganado. Arqueología de los Pueblos Prerromanos en el Occidente de Iberia; Akal: Madrid, Spain, 2003. [Google Scholar]
- Álvarez-Sanchís, J.R. Los Vettones, 2nd ed.; Real Academia de la Historia: Madrid, Spain, 2003. [Google Scholar]
- Salinas, M. Los Vettones: Indigenismo y Romanización en el Occidente de la Meseta; Ediciones Universidad de Salamanca: Salamanca, Spain, 2001. [Google Scholar]
- Sánchez Moreno, E. Vetones: Historia y Arqueología de un Pueblo Prerromano; Ediciones de la Universidad Autónoma de Madrid: Madrid, Spain, 2000. [Google Scholar]
- Álvarez-Sanchís, J.R. The Iron Age in Western Spain (800 BC-AD 50): An overview. Oxf. J. Archaeol. 2000, 19, 65–89. [Google Scholar] [CrossRef]
- Ruiz Zapatero, G.; Álvarez-Sanchís, J.R. Los verracos y los vettones. In Arqueología Vettona. La Meseta Occidental en la Edad del Hierro; Álvarez-Sanchís, J.R., Ed.; Museo Arqueológico Regional: Alcalá de Henares, Spain, 2008; pp. 214–231. [Google Scholar]
- Ruiz Zapatero, G.; Álvarez-Sanchís, J.R.; Rodríguez-Hernández, J. Urbanism in Iron Age Iberia: Two Worlds in Contact. J. Urban Archaeol. 2020, 1, 123–150. [Google Scholar] [CrossRef]
- Ruiz Zapatero, G.; Álvarez-Sanchís, J.R. Las Cogotas: Oppida and the roots of urbanism in the Spanish Meseta. In Social Complexity and the Development of Towns in Iberia: From the Copper Age to the Second Century AD; Cunliffe, B.W., Keay, S.J., Eds.; British Academy: London, UK, 1995; pp. 209–235. [Google Scholar]
- Tully, G.; Piai, C.; Rodríguez-Hernández, J.; Delhommeau, E. Understanding perceptions of cultural landscapes in Europe: A comparative analysis using ‘oppida’ landscapes. Hist. Environ. Policy Pract. 2019, 10, 198–223. [Google Scholar] [CrossRef]
- Moore, T.; Guichard, V.; Álvarez Sanchís, J. The place of archaeology in integrated cultural landscape management. A case study comparing landscapes with Iron Age oppida in England, France and Spain. J. Eur. Landsc. 2020, 1, 9–28. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, J. Los procesos técnicos de la cantería durante la Segunda Edad del Hierro en el occidente de la Meseta. Zephyrus 2012, 70, 113–130. [Google Scholar]
- Fernández-Hernandez, J.; González-Aguilera, D.; Rodríguez-Gonzálvez, P.; Mancera-Taboada, J. A new trend for reverse engineering: Robotized aerial system for spatial information management. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2012; Volume 152, pp. 1785–1790. [Google Scholar]
- González-Aguilera, D.; López-Fernández, L.; Rodríguez-González, P.; Guerrero-Sevilla, D.; Hernández-López, D.; Menna, F.; Nocerino, E.; Toschi, I.; Remondino, F.; Ballabeni, A.; et al. Development of an All-Purpose Free Photogrammetric Tool; ISPRS International Archives: Prague, Czech Republic, 2016. [Google Scholar]
- González-Aguilera, D.; López-Fernández, L.; Rodríguez-González, P.; Guerrero-Sevilla, D.; Hernández-López, D.; Menna, F.; Nocerino, E.; Toschi, I.; Remondino, F.; Ballabeni, A.; et al. InteGRAted Photogrammetric Suite, GRAPHOS. In Proceedings of the Congress: CATCON7-ISPRS, Prague, Czech Republic, 12–19 July 2016. [Google Scholar]
- Pérez Gracia, M.D.L.V. Radar de subsuelo. Evaluación para Aplicaciones en Arqueología y en Patrimonio Histórico-Artístico; Universitat Politècnica de Catalunya: Barcelona, Spain, 2001. [Google Scholar]
- Conyers, L.B. Interpreting Ground-Penetrating Radar for Archaeology; Routledge: London, UK, 2012. [Google Scholar]
- Goodman, D.; Piro, S. GPR Remote Sensing in Archaeology; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- GPR-SLICE-Georadar Data and Image Processing Software. V7.0 Manual. Available online: http://www.gpr-survey.com (accessed on 21 April 2021).
- Olmos Benlloch, P. Aproximació a la metrologia ibèrica a Catalunya (segles V-II aC). Rev. d’Arqueologia Ponent. 2009, 19, 51–74. [Google Scholar]
- Ortiz Romero, P.; Rodríguez Díaz, A. La torre de Hijovejo: Génesis, evolución y contexto de un asentamiento fortificado en La Serena (Badajoz). In Torres, Atalayas y Casas Fortificadas. Explotación y Control del Territorio en Hispania (S. III a. de C. - S. I d. de C.); Moret, P., Chapa, T., Eds.; Universidad de Jaén: Jaén, Spain, 2004; pp. 77–95. [Google Scholar]
- Almagro-Gorbea, M.; Gran-Aymerich, J. El Estanque Monumental de Bibracte (Mont Beuvray, Borgoña); Complutum Extra, 1; Editorial Complutense: Madrid, Spain, 1991. [Google Scholar]
- Fernández-Götz, M. Reassessing the oppida: The role of power and religion. Oxf. J. Archaeol. 2014, 33, 379–394. [Google Scholar] [CrossRef]
- Fernández-Götz, M. Una nueva mirada sobre los oppida de la Europa Templada. Complutum 2013, 24, 131–150. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maté-González, M.Á.; Sáez Blázquez, C.; Carrasco García, P.; Rodríguez-Hernández, J.; Fernández Hernández, J.; Vallés Iriso, J.; Torres, Y.; Troitiño Torralba, L.; Courtenay, L.A.; González-Aguilera, D.; et al. Towards a Combined Use of Geophysics and Remote Sensing Techniques for the Characterization of a Singular Building: “El Torreón” (the Tower) at Ulaca Oppidum (Solosancho, Ávila, Spain). Sensors 2021, 21, 2934. https://doi.org/10.3390/s21092934
Maté-González MÁ, Sáez Blázquez C, Carrasco García P, Rodríguez-Hernández J, Fernández Hernández J, Vallés Iriso J, Torres Y, Troitiño Torralba L, Courtenay LA, González-Aguilera D, et al. Towards a Combined Use of Geophysics and Remote Sensing Techniques for the Characterization of a Singular Building: “El Torreón” (the Tower) at Ulaca Oppidum (Solosancho, Ávila, Spain). Sensors. 2021; 21(9):2934. https://doi.org/10.3390/s21092934
Chicago/Turabian StyleMaté-González, Miguel Ángel, Cristina Sáez Blázquez, Pedro Carrasco García, Jesús Rodríguez-Hernández, Jesús Fernández Hernández, Javier Vallés Iriso, Yolanda Torres, Libertad Troitiño Torralba, Lloyd A. Courtenay, Diego González-Aguilera, and et al. 2021. "Towards a Combined Use of Geophysics and Remote Sensing Techniques for the Characterization of a Singular Building: “El Torreón” (the Tower) at Ulaca Oppidum (Solosancho, Ávila, Spain)" Sensors 21, no. 9: 2934. https://doi.org/10.3390/s21092934