Next Article in Journal
A Hydraulic Pump Fault Diagnosis Method Based on the Modified Ensemble Empirical Mode Decomposition and Wavelet Kernel Extreme Learning Machine Methods
Previous Article in Journal
Robust SCKF Filtering Method for MINS/GPS In-Motion Alignment
Open AccessCommunication

A Data Fusion Method for Non-Destructive Testing by Means of Artificial Neural Networks

1
ESEO-GSII, 10 Blvd Jean Jeanneteau, 49000 Angers, France
2
IREENA, 37 Blvd de l’Université, 44600 Saint-Nazaire, France
3
LAUM UMR CNRS 6613, Université du Mans, Av Olivier Messiaen, 72000 Le Mans, France
*
Author to whom correspondence should be addressed.
Academic Editor: Genda Chen
Sensors 2021, 21(8), 2598; https://doi.org/10.3390/s21082598
Received: 5 March 2021 / Revised: 29 March 2021 / Accepted: 3 April 2021 / Published: 7 April 2021
(This article belongs to the Section Intelligent Sensors)
In the aeronautics sector, aircraft parts are inspected during manufacture, assembly and service, to detect defects eventually present. Defects can be of different types, sizes and orientations, appearing in materials presenting a complex structure. Among the different inspection techniques, Non Destructive Testing (NDT) presents several advantages as they are noninvasive and cost effective. Within the NDT methods, Ultrasonic (US) waves are widely used to detect and characterize defects. However, due the so-called blind zone, they cannot be easily employed for defects close to the surface being inspected. On the other hand, another NDT technique such Eddy Current (EC) can be used only for detecting flaws close to the surface, due to the presence of the EC skin effect. The work presented in this article aims to combine the use of these two NDT methods, exploiting their complementary advantages. To reach this goal, a data fusion method is developed, by using Machine Learning techniques such as Artificial Neural Networks (ANNs). A simulated training database involving simulations of US and EC signals propagating in an Aluminum block in the presence of Side Drill Holes (SDHs) has been implemented, to train the ANNs. Measurements have been then performed on an Aluminum block, presenting tree different SDHs at specific depths. The trained ANNs were used to characterize the different real SDHs, providing an experimental validation. Eventually, particular attention has been addressed to the estimation errors corresponding to each flaw. Experimental results will show that depths and radii estimations error were confined on average within a range of 4%, recording a peak of 11% for the second SDHs. View Full-Text
Keywords: Non Destructive Testing (NDT); Ultrasonic (US); Eddy Current (EC); Machine Learning (ML); Artificial Neural Networks (ANNs); data fusion Non Destructive Testing (NDT); Ultrasonic (US); Eddy Current (EC); Machine Learning (ML); Artificial Neural Networks (ANNs); data fusion
Show Figures

Figure 1

MDPI and ACS Style

Cormerais, R.; Duclos, A.; Wasselynck, G.; Berthiau, G.; Longo, R. A Data Fusion Method for Non-Destructive Testing by Means of Artificial Neural Networks. Sensors 2021, 21, 2598. https://doi.org/10.3390/s21082598

AMA Style

Cormerais R, Duclos A, Wasselynck G, Berthiau G, Longo R. A Data Fusion Method for Non-Destructive Testing by Means of Artificial Neural Networks. Sensors. 2021; 21(8):2598. https://doi.org/10.3390/s21082598

Chicago/Turabian Style

Cormerais, Romain; Duclos, Aroune; Wasselynck, Guillaume; Berthiau, Gérard; Longo, Roberto. 2021. "A Data Fusion Method for Non-Destructive Testing by Means of Artificial Neural Networks" Sensors 21, no. 8: 2598. https://doi.org/10.3390/s21082598

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop