Design and Simulation Investigation of Si3N4 Photonics Circuits for Wideband On-Chip Optical Gas Sensing around 2 µm Optical Wavelength
Abstract
:1. Introduction
2. Structure under Investigation: Si3N4 Multi-Mode Interferometer and Slot Waveguide
3. Slot Waveguides
4. Si3N4 Multi-Mode Interferometer and Slot Waveguide for Wideband On-Chip Optical Gas Sensing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.-M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J. Emerging technologies in Si active photonics. J. Semicond. 2018, 39, 061001. [Google Scholar] [CrossRef]
- Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495–497. [Google Scholar] [CrossRef]
- Lin, H.; Luo, Z.; Gu, T.; Kimerling, L.C.; Wada, K.; Agarwal, A.; Hu, J. Mid-infrared integrated photonics on silicon: A perspective. Nanophotonics 2017, 7, 393–420. [Google Scholar] [CrossRef]
- Wu, J.; Yue, G.; Chen, W.; Xing, Z.; Wang, J.; Wong, W.R.; Cheng, Z.; Set, S.Y.; Murugan, G.S.; Wang, X.; et al. On-Chip Optical Gas Sensors Based on Group-IV Materials. ACS Photonics 2020, 7, 2923–2940. [Google Scholar] [CrossRef]
- Gutierrez-Arroyo, A.; Baudet, E.; Bodiou, L.; Nazabal, V.; Rinnert, E.; Michel, K.; Bureau, B.; Colas, F.; Charriera, J. Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infrared. Sens. Actuators B Chem. 2017, 242, 842–848. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, B.; Lee, C. Progress of infrared guided-wave nanophotonic sensors and devices. Nano Converg. 2020, 7, 1–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tombez, L.; Zhang, E.J.; Orcutt, J.S.; Kamlapurkar, S.; Green, W.M.J. Methane absorption spectroscopy on a silicon photonic chip. Optica 2017, 4, 1322–1325. [Google Scholar] [CrossRef]
- Ranacher, C.; Consani, C.; Tortschanoff, A.; Jannesari, R.; Bergmeister, M.; Grille, T.; Jakoby, B. Mid-infrared absorption gas sensing using a silicon strip waveguide. Sens. Actuators A Phys. 2018, 277, 117–123. [Google Scholar] [CrossRef]
- Yazici, M.S.; Dong, B.; Hasan, D.; Sun, F.; Lee, C. Integration of MEMS IR detectors with MIR waveguides for sensing applications. Opt. Express 2020, 28, 11524–11537. [Google Scholar] [CrossRef] [PubMed]
- Consani, C.; Ranacher, C.; Tortschanoff, A.; Grille, T.; Irsigler, P.; Jakoby, B. Mid-infrared photonic gas sensing using a silicon waveguide and an integrated emitter. Sens. Actuators B Chem. 2018, 274, 60–65. [Google Scholar] [CrossRef]
- Dong, B.; Hu, T.; Luo, X.; Chang, Y.; Guo, X.; Wang, H.; Kwong, D.-L.; Lo, G.-Q.; Lee, C. Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure. Nanomaterials 2018, 8, 893. [Google Scholar] [CrossRef] [Green Version]
- Crowder, J.G.; Smith, S.D.; Vass, A.; Keddie, J. Infrared methods for gas detection. In Mid-Infrared Semiconductor Optoelectronics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Rogalski, A.; Chrzanowski, K. Infrared devices and techniques. Opto Electron. Rev. 2002, 10, 111–136. [Google Scholar]
- He, L.; Guo, Y.; Han, Z.; Wada, K.; Kimerling, L.C.; Michel, J.; Agarwal, A.M.; Li, G.; Zhang, L. Loss reduction of silicon-on-insulator waveguides for deep mid-infrared applications. Opt. Lett. 2017, 42, 3454–3457. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Lin, P.; Singh, V.; Kimerling, L.; Hu, J.; Richardson, K.; Agarwal, A.; Tan, D.T.H. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Appl. Phys. Lett. 2016, 108, 141106. [Google Scholar] [CrossRef]
- Pi, M.; Zheng, C.; Bi, R.; Zhao, H.; Liang, L.; Zhang, Y.; Wang, Y.; Tittel, F.K. Design of a mid-infrared suspended chalcogenide/silica-on-silicon slot waveguide spectroscopic gas sensor with enhanced light-gas interaction effect. Sens. Actuators B Chem. 2019, 297, 126732. [Google Scholar] [CrossRef]
- Huang, Y.; Kalyoncu, S.K.; Zhao, Q.; Torun, R.; Boyraz, O. Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors. Opt. Commun. 2014, 313, 186–194. [Google Scholar] [CrossRef]
- Ramirez, J.M.; Vakarin, V.; Frigerio, J.; Chaisakul, P.; Chrastina, D.; le Roux, X.; Ballabio, A.; Vivien, L.; Isella, G.; Marris-Morini, D. Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics. Opt. Express 2017, 25, 6561–6567. [Google Scholar] [CrossRef] [Green Version]
- Montesinos-Ballester, M.; Liu, Q.; Vakarin, V.; Ramirez, J.M.; Alonso-Ramos, C.; le Roux, X.; Frigerio, J.; Ballabio, A.; Talamas, E.; Vivien, L.; et al. On-chip Fourier-transform spectrometer based on spatial heterodyning tuned by thermo-optic effect. Sci. Rep. 2019, 9, 14633. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Nedeljkovic, M.; Penades, J.S.; Wu, Y.; Qu, Z.; Khokhar, A.Z.; Debnath, K.; Mashanovich, G.Z. Suspended low-loss germanium waveguides for the longwave infrared. Opt. Lett. 2018, 43, 5997–6000. [Google Scholar] [CrossRef]
- Hu, T.; Dong, B.; Luo, X.; Liow, T.-Y.; Song, J.; Lee, C.; Lo, G.-Q. Silicon photonic platforms for mid-infrared applications. Photonics Res. 2017, 5, 417–430. [Google Scholar] [CrossRef] [Green Version]
- Roelkens, G.; Dave, U.D.; Gassenq, A.; Hattasan, N.; Hu, C.; Kuyken, B.; Leo, F.; Malik, A.; Muneeb, M.; Ryckeboer, E.; et al. Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 8201511. [Google Scholar] [CrossRef]
- Ye, N.; Gleeson, M.; Sadiq, M.; Roycroft, B.; Robert, C.; Yang, H.; Zhang, H.; Morrissey, P.; Suibhne, N.M.; Thomas, K.; et al. InP-Based active and passive components for communication systems at 2 μm. J. Lightwave Technol. 2015, 33, 971–975. [Google Scholar] [CrossRef]
- ASE1900—Tm-Doped Fiber ASE Source, 50 mW, 1900 nm Band. Available online: https://www.thorlabs.com/thorproduct.cfm?partnumber=ASE1900 (accessed on 30 November 2020).
- Subramanian, A.Z.; Ryckeboer, E.; Dhakal, A.; Peyskens, F.; Malik, A.; Kuyken, B.; Zhao, H.; Pathak, S.; Ruocco, A.; de Groote, A.; et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip. Photonics Res. 2015, 3, B47–B59. [Google Scholar] [CrossRef]
- Wang, R.; Vasiliev, A.; Muneeb, M.; Malik, A.; Sprengel, S.; Boehm, G.; Amann, M.-C.; Šimonytė, I.; Vizbaras, A.; Vizbaras, K.; et al. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range. Sensors 2017, 17, 1788. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Sprengel, S.; Vasiliev, A.; Boehm, G.; van Campenhout, J.; Lepage, G.; Verheyen, P.; Baets, R.; Amann, M.-C.; Roelkens, G. Widely tunable 2.3 μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing. Photonics Res. 2018, 6, 858–866. [Google Scholar] [CrossRef] [Green Version]
- Gassenq, A.; Gencarelli, F.; van Campenhout, J.; Shimura, Y.; Loo, R.; Narcy, G.; Vincent, B.; Roelkens, G. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt. Express 2012, 20, 27297–27303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Brouillet, J.; Salas, A.; Wang, X.; Liu, J. Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics. Opt. Mater. Express 2013, 3, 1385–1396. [Google Scholar] [CrossRef]
- Pham, T.; Du, W.; Tran, H.; Margetis, J.; Tolle, J.; Sun, G.; Soref, R.A.; Naseem, H.A.; Li, B.; Yu, S.-Q. Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection. Opt. Express 2016, 24, 4519–4531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Muneeb, M.; Sprengel, S.; Boehm, G.; Malik, A.; Baets, R.; Amann, M.-C.; Roelkens, G. III-V-on-silicon 2-µm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors. Opt. Express 2016, 24, 8480–8490. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Hu, T.-C.; Zhang, L.; Dinu, M.; Kopf, R.; Tate, A.; Buhl, L.; Neilson, D.T.; Luo, X.; Liow, T.-Y.; et al. 1.9 μm hybrid silicon/iii-v semiconductor laser. Electron. Lett. 2013, 49, 664–666. [Google Scholar] [CrossRef]
- Spott, A.; Davenport, M.; Peters, J.; Bovington, J.; Heck, M.J.R.; Stanton, E.J.; Vurgaftman, I.; Meyer, J.; Bowers, J. Heterogeneously integrated 2.0 μm CW hybrid silicon lasers at room temperature. Opt. Lett. 2015, 40, 1480–1483. [Google Scholar] [CrossRef] [Green Version]
- Rahim, A.; Ryckeboer, E.; Subramanian, A.Z.; Clemmen, S.; Kuyken, B.; Dhakal, A.; Raza, A.; Hermans, A.; Muneeb, M.; Dhoore, S.; et al. Expanding the Silicon Photonics Portfolio with Silicon Nitride Photonic Integrated Circuits. J. Lightwave Technol. 2017, 35, 639–649. [Google Scholar] [CrossRef]
- Kitamura, R.; Pilon, L.; Jonasz, M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 2016, 46, 8118–8133. [Google Scholar] [CrossRef]
- Zhang, Z.; Yako, M.; Ju, K.; Kawai, N.; Chaisakul, P.; Tsuchizawa, T.; Hikita, M.; Yamada, K.; Ishikawa, Y.; Wada, K. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer. Sci. Technol. Adv. Mater. 2017, 18, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Martyshkin, D.; Fedorov, V.; Kesterson, T.; Vasilyev, S.; Guo, H.; Liu, J.; Weng, W.; Vodopyanov, K.; Kippenberg, T.J.; Mirov, S. Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide. Opt. Mater. Express 2019, 9, 2553–2559. [Google Scholar] [CrossRef]
- Koompai, N.; Limsuwan, P.; le Roux, X.; Vivien, L.; Marris-Morini, D.; Chaisakul, P. Analysis of Si3N4 waveguides for on-chip gas sensing by optical absorption within the mid-infrared region between 2.7 and 3.4 µm. Results Phys. 2020, 16, 102957. [Google Scholar] [CrossRef]
- Ziebell, M. Silicon Optical Transceiver for Local Access Networks. Ph.D. Thesis, Université Paris Sud—Paris XI, Orsay, France, 2013. [Google Scholar]
- Lumerical’s Tools Enable the Design of Photonic Components, Circuits, and Systems. Available online: https://www.lumerical.com (accessed on 30 November 2020).
- Mere, V.; Kallega, R.; Selvaraja, S.K. Efficient and tunable strip-to-slot fundamental mode coupling. Opt. Express 2018, 26, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Dell’Olio, F.; Passaro, V.M.N. Optical sensing by optimized silicon slot waveguides. Opt. Express 2007, 15, 4977–4993. [Google Scholar] [CrossRef]
- Deng, Q.; Liu, L.; Li, X.; Zhou, Z. Strip-slot waveguide mode converter based on symmetric multimode interference. Opt. Lett. 2014, 39, 5665–5668. [Google Scholar] [CrossRef]
- Cheng, X.; Hong, J.; Spring, A.M.; Yokoyama, S. Fabrication of a high-Q factor ring resonator using LSCVD deposited Si3N4 film. Opt. Mater. Express 2017, 7, 2182–2187. [Google Scholar] [CrossRef]
- El Dirani, H.; Casale, M.; Kerdiles, S.; Socquet-Clerc, C.; Letartre, X.; Monat, C.; Sciancalepore, C. Crack-Free Silicon-Nitride-on-Insulator nonlinear circuits for continuum generation in the C-Band. IEEE Photonics Technol. Lett. 2018, 30, 355–358. [Google Scholar] [CrossRef]
- Almeida, V.R.; Xu, Q.; Barrios, C.A.; Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 2004, 29, 1209–1211. [Google Scholar] [CrossRef] [PubMed]
- Kita, D.M.; Michon, J.; Johnson, S.G.; Hu, J. Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing? Optica 2018, 5, 1046–1054. [Google Scholar] [CrossRef] [Green Version]
- Ottonello-Briano, F.; Errando-Herranz, C.; Rodjegard, H.; Martin, H.; Sohlstrom, H.; Gylfason, K.B. Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide. Opt. Lett. 2020, 45, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Ranacher, C.; Consani, C.; Vollert, N.; Tortschanoff, A.; Bergmeister, M.; Grille, T.; Jakoby, B. Characterization of evanescent field gas sensor structures based on silicon photonics. IEEE Photonics J. 2018, 10, 2700614. [Google Scholar] [CrossRef]
- Grillot, F.; Vivien, L.; Laval, S.; Cassan, E. Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides. J. Lightwave Technol. 2006, 24, 891–896. [Google Scholar] [CrossRef]
- Penadés, J.S.; Khokhar, A.Z.; Nedeljkovic, M.; Mashanovich, G.Z. Low-Loss Mid-Infrared SOI Slot Waveguides. IEEE Photonics Technol. Lett. 2015, 27, 1197–1199. [Google Scholar]
- Penadés, J.S. Group IV Mid-Infrared Devices for Sensing. Ph.D. Thesis, University of Southampton, Southampton, UK, 2017. [Google Scholar]
- Pfeiffer, M.H.P.; Liu, J.; Raja, A.S.; Morais, T.; Ghadiani, B.; Kippenberg, T.J. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: Fabrication and loss origins. Optica 2018, 5, 884–892. [Google Scholar] [CrossRef]
- Soldano, L.B.; Pennings, E.C.M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Lightwave Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Han, K.; Kim, S.; Wirth, J.; Teng, M.; Xuan, Y.; Niu, B.; Qi, M. Strip-slot direct mode coupler. Opt. Express 2016, 24, 6532–6541. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Arroyo, A.; Baudet, E.; Bodiou, L.; Lemaitre, J.; Hardy, I.; Faijan, F.; Bureau, B.; Nazabal, V.; Charrier, J. Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared. Opt. Express 2016, 24, 23109–23117. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ramirez, J.M.; Vakarin, V.; le Roux, X.; Ballabio, A.; Frigerio, J.; Chrastina, D.; Isella, G.; Bouville, D.; Vivien, L.; et al. Mid-infrared sensing between 5.2 and 6.6 μm wavelengths using Ge-rich SiGe waveguides. Opt. Mater. Express 2018, 8, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Pi, M.; Zheng, C.; Peng, Z.; Zhao, H.; Lang, J.; Liang, L.; Zhang, Y.; Wang, Y.; Tittel, F.K. Theoretical study of microcavity-enhanced absorption spectroscopy for mid-infrared methane detection using a chalcogenide/silica-on-fluoride horizontal slot-waveguide racetrack resonator. Opt. Express 2020, 28, 21432–21446. [Google Scholar] [CrossRef] [PubMed]
- Mackowiak, V.; Peupelmann, J.; Ma, Y.; Gorges, A. NEP—Noise Equivalent Power; Techical Report; Thorlabs: Newton, NJ, USA, 2016. [Google Scholar]
- Luke, K.; Okawachi, Y.; Lamont, M.R.E.; Gaeta, A.L.; Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 2015, 40, 4823–4826. [Google Scholar] [CrossRef]
- Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef]
- HITRAN Database, HITRAN on the Web. Available online: http://hitran.iao.ru/molecule (accessed on 31 July 2019).
- The National Institute for Occupational Safety and Health (NIOSH). Available online: https://www.cdc.gov/niosh (accessed on 30 November 2020).
- Kumar, L.; Islam, T.; Mukhopadhyay, S.C. Sensitivity enhancement of a PPM level capacitive moisture sensor. Electronics 2017, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Stachowiak, D.; Jaworski, P.; Krzaczek, P.; Maj, G.; Nikodem, M. Laser-Based Monitoring of CH4, CO2, NH3, and H2S in Animal Farming—System Characterization and Initial Demonstration. Sensors 2018, 18, 529. [Google Scholar] [CrossRef] [Green Version]
Gas Molecules | Optical Wavelength (µm) | Molar Absorption (Lmol−1cm−1) | Estimated Detection Limit (ppm) | ||
---|---|---|---|---|---|
Integration Time (second) | |||||
0.1 ms | 0.1 s | 10 s | |||
CH4 | 1.65 | ~3.8 | 262 | 8.38 | 0.838 |
H2O | 1.85 | ~5.2 | 94.3 | 3.01 | 0.301 |
NH3 | 1.95 | ~3.4 | 136 | 4.37 | 0.437 |
CO2 | 2 | ~1.1 | 437 | 13.9 | 1.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koompai, N.; Chaisakul, P.; Limsuwan, P.; Le Roux, X.; Vivien, L.; Marris-Morini, D. Design and Simulation Investigation of Si3N4 Photonics Circuits for Wideband On-Chip Optical Gas Sensing around 2 µm Optical Wavelength. Sensors 2021, 21, 2513. https://doi.org/10.3390/s21072513
Koompai N, Chaisakul P, Limsuwan P, Le Roux X, Vivien L, Marris-Morini D. Design and Simulation Investigation of Si3N4 Photonics Circuits for Wideband On-Chip Optical Gas Sensing around 2 µm Optical Wavelength. Sensors. 2021; 21(7):2513. https://doi.org/10.3390/s21072513
Chicago/Turabian StyleKoompai, Natnicha, Papichaya Chaisakul, Pichet Limsuwan, Xavier Le Roux, Laurent Vivien, and Delphine Marris-Morini. 2021. "Design and Simulation Investigation of Si3N4 Photonics Circuits for Wideband On-Chip Optical Gas Sensing around 2 µm Optical Wavelength" Sensors 21, no. 7: 2513. https://doi.org/10.3390/s21072513
APA StyleKoompai, N., Chaisakul, P., Limsuwan, P., Le Roux, X., Vivien, L., & Marris-Morini, D. (2021). Design and Simulation Investigation of Si3N4 Photonics Circuits for Wideband On-Chip Optical Gas Sensing around 2 µm Optical Wavelength. Sensors, 21(7), 2513. https://doi.org/10.3390/s21072513