Monitoring of Torque Induced Strain in Composite Shafts with Embedded and Surface-Mounted Optical Fiber Bragg Gratings
Abstract
:1. Introduction
2. Materials and Methods
3. Mechanical Analysis
3.1. Material Homogenization
3.2. Numerical Scheme
4. Results and Discussion
4.1. Optical Fiber Gratings Sensor Embedment and Residual Strains
4.2. Torque Induced Strain Monitoring: Experimental and Numerical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, D.D.L. Composite Materials: Science and Applications; Springer: London, UK, 2010. [Google Scholar]
- Shen, F.C. A filament-wound structure technology overview. Mater. Chem. Phys. 1995, 42, 96–100. [Google Scholar] [CrossRef]
- Ferri Aliabadi, M.H.; Sharif Khodaei, Z. Structural Health Monitoring for Advanced Composite Structures; World Scientific Publishing Company: Singapore, 2017. [Google Scholar]
- Measures, R.M. Structural Monitoring with Fiber Optic Technology; Elsevier Science: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Kang, H.-K.; Kang, D.-H.; Bang, H.-J.; Hong, C.-S.; Kim, C.-G. Cure monitoring of composite laminates using fiber optic sensors. Smart Mater. Struct. 2002, 11, 279–287. [Google Scholar] [CrossRef]
- Geernaert, T.; Luyckx, G.; Voet, E.; Nasilowski, T.; Chah, K.; Becker, M.; Bartelt, H.; Urbanczyk, W.; Wojcik, J.; Waele, W.D.; et al. Transversal Load Sensing with Fiber Bragg Gratings in Microstructured Optical Fibers. IEEE Photonics Technol. Lett. 2009, 21, 6–8. [Google Scholar] [CrossRef]
- Sulejmani, S.; Sonnenfeld, C.; Geernaert, T.; Luyckx, G.; Van Hemelrijck, D.; Mergo, P.; Urbanczyk, W.; Chah, K.; Caucheteur, C.; Mégret, P.; et al. Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers. Opt. Express 2013, 21, 20404–20416. [Google Scholar] [CrossRef] [Green Version]
- Sonnenfeld, C.; Luyckx, G.; Sulejmani, S.; Geernaert, T.; Eve, S.; Gomina, M.; Chah, K.; Mergo, P.; Urbanczyk, W.; Thienpont, H.; et al. Microstructured optical fiber Bragg grating as an internal three-dimensional strain sensor for composite laminates. Smart Mater. Struct. 2015, 24, 055003. [Google Scholar] [CrossRef]
- De Pauw, B.; Goossens, S.; Geernaert, T.; Habas, D.; Thienpont, H.; Berghmans, F. Fibre Bragg Gratings in Embedded Microstructured Optical Fibres Allow Distinguishing between Symmetric and Anti-Symmetric Lamb Waves in Carbon Fibre Reinforced Composites. Sensors 2017, 17, 1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canal, L.P.; Sarfaraz, R.; Violakis, G.; Botsis, J.; Michaud, V.; Limberger, H.G. Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors. Compos. Struct. 2014, 112, 241–247. [Google Scholar] [CrossRef]
- Goossens, S.; De Pauw, B.; Geernaert, T.; Salmanpour, M.S.; Sharif Khodaei, Z.; Karachalios, E.; Saenz-Castillo, D.; Thienpont, H.; Berghmans, F. Aerospace-grade surface mounted optical fibre strain sensor for structural health monitoring on composite structures evaluated against in-flight conditions. Smart Mater. Struct. 2019, 28, 065008. [Google Scholar] [CrossRef]
- Nascimento, M.; Inácio, P.; Paixão, T.; Camacho, E.; Novais, S.; Santos, T.G.; Fernandes, F.M.B.; Pinto, J.L. Embedded Fiber Sensors to Monitor Temperature and Strain of Polymeric Parts Fabricated by Additive Manufacturing and Reinforced with NiTi Wires. Sensors 2020, 20, 1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Moreno, H.; Collombet, F.; Douchin, B.; Choqueuse, D.; Davies, P.; González Velázquez, J.L. Entire Life Time Monitoring of Filament Wound Composite Cylinders Using Bragg Grating Sensors: II. Process Monitoring. Appl. Compos. Mater. 2009, 16, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Moreno, H.; Collombet, F.; Douchin, B.; Choqueuse, D.; Davies, P. Entire Life Time Monitoring of Filament Wound Composite Cylinders Using Bragg Grating Sensors: III. In-Service External Pressure Loading. Appl. Compos. Mater. 2009, 16, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.-K.; Park, J.-S.; Kang, D.-H.; Kim, C.-U.; Hong, C.-S.; Kim, C.-G. Strain monitoring of a filament wound composite tank using fiber Bragg grating sensors. Smart Mater. Struct. 2002, 11, 848–853. [Google Scholar] [CrossRef]
- Park, S.W.; Kang, D.H.; Bang, H.J.; Park, S.O.; Kim, C.G. Strain Monitoring and Damage Detection of a Filament Wound Composite Pressure Tank Using Embedded Fiber Bragg Grating Sensors. Key Eng. Mater. 2006, 321–323, 182–185. [Google Scholar] [CrossRef]
- Ravet, F.; Zou, L.; Bao, X.; Chen, L.; Huang, R.F.; Khoo, H.A. Detection of buckling in steel pipeline and column by the distributed Brillouin sensor. Opt. Fiber Technol. 2006, 12, 305–311. [Google Scholar] [CrossRef]
- Yang, W.; Tavner, P.J.; Crabtree, C.J.; Feng, Y.; Qiu, Y. Wind turbine condition monitoring: Technical and commercial challenges. Wind Energy 2014, 17, 673–693. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Kiyosawa, Y.; Paul, R.P. A torque sensing technique for robots with harmonic drives. IEEE Trans. Robot. Autom. 1993, 9, 108–116. [Google Scholar] [CrossRef]
- Gao, C.; Wang, D.; Yu, Y.; Zheng, Y.; Jiang, S.; Deng, Z. Measurement technique of mechanical parameters for tubular workpiece based on Fiber Bragg Grating. Chin. J. Appl. Mech. 2015, 32, 817–822. [Google Scholar]
- Leal-Junior, A.G.; Frizera, A.; Marques, C.; Sánchez, M.R.A.; Botelho, T.R.; Segatto, M.V.; Pontes, M.J. Polymer optical fiber strain gauge for human-robot interaction forces assessment on an active knee orthosis. Opt. Fiber Technol. 2018, 41, 205–211. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Theodosiou, A.; Min, R.; Casas, J.; Díaz, C.R.; Santos, W.M.D.; Pontes, M.J.; Siqueira, A.A.G.; Marques, C.; Kalli, K.; et al. Quasi-Distributed Torque and Displacement Sensing on a Series Elastic Actuator’s Spring Using FBG Arrays Inscribed in CYTOP Fibers. IEEE Sens. J. 2019, 19, 4054–4061. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Frizera, A.; Marques, C.; Sánchez, M.R.A.; Santos, W.M.d.; Siqueira, A.A.G.; Segatto, M.V.; Pontes, M.J. Polymer Optical Fiber for Angle and Torque Measurements of a Series Elastic Actuator’s Spring. J. Lightwave Technol. 2018, 36, 1698–1705. [Google Scholar] [CrossRef]
- Sanchez, M.R.A.; Leal-Junior, A.G.; Segatto, M.V.; Marques, C.; dos Santos, W.M.; Siqueira, A.A.G.; Frizera, A. Fiber Bragg grating-based sensor for torque and angle measurement in a series elastic actuator’s spring. Appl. Opt. 2018, 57, 7883. [Google Scholar] [CrossRef]
- Konstantaki, M.; Childs, P.; Sozzi, M.; Pissadakis, S. Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers. Laser Photonics Rev. 2013, 7, 439–443. [Google Scholar] [CrossRef]
- Jülich, F.; Aulbach, L.; Wilfert, A.; Kratzer, P.; Kuttler, R.; Roths, J. Gauge factors of fibre Bragg grating strain sensors in different types of optical fibres. Meas. Sci. Technol. 2013, 24, 094007. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Frizera, A.; Marques, C. Development and Characterization of UV-Resin Coated Fiber Bragg Gratings. Sensors 2020, 20, 3026. [Google Scholar] [CrossRef]
- Sarkar, S.; Tarhani, M.; Eghbal, M.K.; Shadaram, M. Discrimination between strain and temperature effects of a single fiber Bragg grating sensor using sidelobe power. J. Appl. Phys. 2020, 127, 114503. [Google Scholar] [CrossRef]
- Daniel, I.; Ishai, O. Engineering Mechanics of Composite Materials; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Dow Chemical Company. VORAFORCE™ Filament Winding, Epoxy Resin System-VORAFORCE TW 100 Series. Available online: https://www.dow.com (accessed on 29 March 2021).
- TORAYCA®. T700S Standard Modulus Carbon Fiber. Available online: https://www.toraycma.com (accessed on 29 March 2021).
- Kriz, R.D.; Stinchcomb, W.W. Elastic moduli of transversely isotropic graphite fibers and their composites. Exp. Mech. 1979, 19, 41–49. [Google Scholar] [CrossRef]
- Kress, G. Three-Dimensional Properties of a Generally Orthotropic Symmetric Laminate. In Proceedings of the European Mechanics Colloqium 214, Kupari, Jugoslavia, 16–19 September 1986; p. 191. [Google Scholar]
- Botsis, J. Fiber Bragg Grating Applied to In Situ Characterization of Composites. In Wiley Encyclopedia of Composites; Nicolais, L., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–15. [Google Scholar] [CrossRef]
- Stutz, S.; Cugnoni, J.; Botsis, J. Crack—Fiber sensor interaction and characterization of the bridging tractions in mode I delamination. Eng. Fract. Mech. 2011, 78, 890–900. [Google Scholar] [CrossRef]
- Abaqus Analysis User’s Manual (v6.12); Dassault Systèmes©: Providence, RI, USA, 2012.
- Kravchenko, O.G.; Kravchenko, S.G.; Pipes, R.B. Chemical and thermal shrinkage in thermosetting prepreg. Compos. Part A Appl. Sci. Manuf. 2016, 80, 72–81. [Google Scholar] [CrossRef]
- Timoshenko, S.; Goodier, J.N. Theory of Elasticity; McGraw-Hill Book Co.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1951. [Google Scholar]
UD-lamina | 133.5 | 7.4 | 7.4 | 0.31 | 0.31 | 0.43 | 3.6 | 3.6 | 2.4 |
[GPa] | [GPa] | [GPa] | [-] | [-] | [-] | [GPa] | [GPa] | [GPa] | |
[±55, ±55, +86, ±55]s | 16.1 | 55.5 | (8.4) | 0.49 | (0.29) | (−0.12) | 36.3 | (2.6) | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantaki, M.; Violakis, G.; Pappas, G.A.; Geernaert, T.; Korakas, N.; Tiriakidis, N.; Tiriakidi, T.; Tiriakidis, K.; Thienpont, H.; Berghmans, F.; et al. Monitoring of Torque Induced Strain in Composite Shafts with Embedded and Surface-Mounted Optical Fiber Bragg Gratings. Sensors 2021, 21, 2403. https://doi.org/10.3390/s21072403
Konstantaki M, Violakis G, Pappas GA, Geernaert T, Korakas N, Tiriakidis N, Tiriakidi T, Tiriakidis K, Thienpont H, Berghmans F, et al. Monitoring of Torque Induced Strain in Composite Shafts with Embedded and Surface-Mounted Optical Fiber Bragg Gratings. Sensors. 2021; 21(7):2403. https://doi.org/10.3390/s21072403
Chicago/Turabian StyleKonstantaki, Maria, Georgios Violakis, Georgios A. Pappas, Thomas Geernaert, Nikos Korakas, Nikos Tiriakidis, Thomai Tiriakidi, Kosmas Tiriakidis, Hugo Thienpont, Francis Berghmans, and et al. 2021. "Monitoring of Torque Induced Strain in Composite Shafts with Embedded and Surface-Mounted Optical Fiber Bragg Gratings" Sensors 21, no. 7: 2403. https://doi.org/10.3390/s21072403
APA StyleKonstantaki, M., Violakis, G., Pappas, G. A., Geernaert, T., Korakas, N., Tiriakidis, N., Tiriakidi, T., Tiriakidis, K., Thienpont, H., Berghmans, F., Botsis, J., & Pissadakis, S. (2021). Monitoring of Torque Induced Strain in Composite Shafts with Embedded and Surface-Mounted Optical Fiber Bragg Gratings. Sensors, 21(7), 2403. https://doi.org/10.3390/s21072403