# A Robust Fault-Tolerant Predictive Control for Discrete-Time Linear Systems Subject to Sensor and Actuator Faults

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Problem Statement

**Lemma**

**1.**

**Assumption**

**1.**

**Remark**

**1.**

## 3. Observer Design

## 4. Observer-Based Robust Tolerant Predictive Control

**Theorem**

**1.**

**Proof.**

## 5. Robust Stability Analysis

**Lemma**

**2.**

**Proof.**

**Theorem**

**2.**

**Proof.**

## 6. Results and Discussions

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Kommuri, S.K.; Defoort, M.; Karimi, H.R.; Veluvolu, K.C. A robust observer-based sensor fault-Tolerant control for PMSM in electric vehicles. IEEE Trans. Ind. Electron.
**2016**, 63, 7671–7681. [Google Scholar] [CrossRef] - Gao, Z.; Liu, X.; Chen, Z.Q. Unknown input observer-based robust fault estimation for systems corrupted by partially decoupled disturbances. IEEE Trans. Ind. Electron.
**2016**, 63, 2537–2547. [Google Scholar] [CrossRef][Green Version] - Liu, X.; Gao, Z.; Zhang, A. Observer-based fault estimation and tolerant control for stochastic Takagi–Sugeno fuzzy systems with Brownian parameter Perturbations. Automatica
**2019**, 102, 137–149. [Google Scholar] [CrossRef] - Habibi, H.; Howard, I.; Simani, S.; Fekih, A. Decoupling Adaptive Sliding Mode Observer Design for Wind Turbines Subject to Simultaneous Faults in Sensors and Actuators. IEEE/CAA J. Autom. Sin.
**2021**, 8, 837–847. [Google Scholar] [CrossRef] - Guezmil, A.; Berriri, H.; Pusca, R.; Sakly, A.; Romary, R.; Mimouni, M.F. Experimental Investigation of Passive Fault Tolerant Control for Induction Machine Using Sliding Mode Approach. Asian J. Control
**2019**, 21, 520–532. [Google Scholar] [CrossRef][Green Version] - Li, N.; Sun, H.; Zhang, Q. Robust passive adaptive fault tolerant control for stochastic wing flutter via delay control. Eur. J. Control
**2019**, 48, 74–82. [Google Scholar] [CrossRef] - Wang, R.; Wang, J. Passive Actuator Fault-Tolerant Control for a Class of Overactuated Nonlinear Systems and Applications to Electric Vehicles. IEEE Trans. Veh. Technol.
**2013**, 62, 972–985. [Google Scholar] [CrossRef] - Zhang, G.; Zhang, H.; Huang, X.; Wang, J.; Yu, H.; Graaf, R. Active Fault-Tolerant Control for Electric Vehicles With Independently Driven Rear In-Wheel Motors Against Certain Actuator Faults. IEEE Trans. Control Syst. Technol.
**2016**, 24, 1557–1572. [Google Scholar] [CrossRef] - Song, X.; Liu, C.; Zhang, S. Adaptive Active Fault Tolerant Control for Discrete-Time Systems with Uncertainties. Asian J. Control
**2015**, 18, 1417–1426. [Google Scholar] [CrossRef] - Jiang, J.; Yu, X. Fault tolerant control systems: A comparative study between active and passive approaches. Annu. Rev. Control
**2012**, 36, 60–72. [Google Scholar] [CrossRef] - Darouach, M. Observers and observer-based control for descriptor systems revisited. IEEE Trans. Autom. Control
**2014**, 59, 1367–1373. [Google Scholar] [CrossRef] - Wang, Z.; Shen, Y.; Zhang, X.; Wang, Q. Observer design for discrete-time descriptor systems: An LMI approach. Syst. Control Lett.
**2012**, 61, 683–687. [Google Scholar] [CrossRef] - Jia, Q.; Chen, W.; Zhang, Y.; Li, H. Fault reconstruction for takagic sugeno fuzzy systems via learning observers. Int. J. Control
**2016**, 89, 564–578. [Google Scholar] [CrossRef] - Zhang, B.L.; Feng, A.M.; Li, J. Observer-based optimal fault-tolerant control for offshore platforms. Comput. Electr. Eng.
**2014**, 40, 2204–2215. [Google Scholar] [CrossRef] - Ye, D.; Chen, M.; Li, K. Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics. ISA Trans.
**2017**, 71, 32–39. [Google Scholar] [CrossRef] - Elkhatib, K.; Aitouche, A. Fuzzy observer-based fault tolerant control against sensor faults for proton exchange membrane fuel cells. Int. J. Hydrogen Energy
**2020**, 45, 11220–11232. [Google Scholar] - Dong, Q.C.; Zhong, M.Y.; Ding, S.X. Active fault tolerant control for a class of linear time-delay systems in finite frequency domain. Int. J. Syst. Sci.
**2012**, 43, 543–551. [Google Scholar] [CrossRef] - Aouaouda, S.; Chadli, M.; Boukhnifer, M.; Karimi, R.H. Robust fault tolerant tracking controller design for vehicle dynamics: A descriptor approach. Mechatronics
**2015**, 30, 316–326. [Google Scholar] [CrossRef] - Lee, T.H.; Lim, C.P.; Nahavandi, S.; Roberts, R.G. Observer-Based H∞ Fault-Tolerant Control for Linear Systems with Sensor and Actuator Faults. IEEE Syst. J.
**2019**, 13, 1981–1990. [Google Scholar] [CrossRef] - Liang, X.; Wanga, Q.; Hub, C.; Dong, C. Observer-based H∞fault-tolerant attitude control for satellite with actuator and sensor faults. Aerosp. Sci. Technol.
**2019**, 95, 105424. [Google Scholar] [CrossRef] - Zahaf, A.; Bououden, S.; Chadli, M.; Chemachema, M. Robust fault tolerant optimal predictive control of hybrid actuators with time varying delay for industrial robot arm. Asian J. Control
**2021**. [Google Scholar] [CrossRef] - Bououden, S.; Chadli, M.; Zhang, L.; Yang, T. Constrained model predictive control for time-varying delay systems: Application to an active car suspension. Int. J. Control Autom. Syst.
**2016**, 14, 51–58. [Google Scholar] [CrossRef] - Keller, R.; Ding, S.X.; Müller, M.; Stolten, D. Fault-tolerant model predictive control of a direct methanol-fuel cell system with actuator faults. Control Eng. Pract.
**2017**, 66, 99–115. [Google Scholar] [CrossRef] - Cavanini, L.; Ippoliti, G. Fault tolerant model predictive control for an over-actuated vessel. Ocean Eng.
**2018**, 160, 1–9. [Google Scholar] [CrossRef] - Boulkaibet, I.; Belarbi, K.; Bououden, S.; Chadli, M.; Marwala, T. An adaptive fuzzy predictive control of nonlinear processes based on Multi-Kernel least squares support vector regression. Appl. Soft Comput.
**2018**, 73, 572–590. [Google Scholar] [CrossRef] - Boulkaibet, I.; Belarbi, K.; Bououden, S.; Marwala, T.; Chadli, M. A new TS fuzzy model predictive control for nonlinear processes. Expert Syst. Appl.
**2017**, 88, 132–151. [Google Scholar] [CrossRef] - Zou, T.; Wu, S.; Zhang, R. Improved state space model predictive fault-tolerant control for injection molding batch processes with partial actuator faults using GA optimization. ISA Trans.
**2018**, 73, 147–153. [Google Scholar] [CrossRef] - Zarch, M.G.; Puig, V.; Poshtan, J.; Shoorehdeli, M.A. Actuator fault tolerance evaluation approach of nonlinear model predictive control systems using viability theory. J. Process Control
**2018**, 71, 35–45. [Google Scholar] [CrossRef] - Shi, H.; Li, P.; Su, C.; Wang, Y.; Yu, J.; Cao, J. Robust constrained model predictive fault-tolerant control for industrial processes with partial actuator failures and interval time-varying delays. J. Process Control
**2019**, 75, 187–203. [Google Scholar] [CrossRef] - Sheikhbahaei, R.; Alasty, A.; Vossoughi, G. Robust fault tolerant explicit model predictive control. Automatica
**2018**, 97, 248–253. [Google Scholar] [CrossRef] - Zhang, R.; Lu, J.; Qu, H.; Gao, F. State space model predictive fault-tolerant control for batch processes with partial actuator failure. J. Process Control
**2014**, 24, 613–620. [Google Scholar] [CrossRef] - Bououden, S.; Chadli, M. Predictive control for time-delay systems: Theory and applications. In Book Chap; Elsevier: Amsterdam, The Netherlands; Academic Press: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Boyd, S.; Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory. In Society for Industrial and Applied Mathematics (SIAM); Springer: Cham, Switzerland, 1994. [Google Scholar]
- Kothare, M.; Balakrishnan, V.; Morari, M. Robust Constrained Model Predictive Control using Linear Matrix Inequalities. Automatica
**1996**, 32, 1361–1379. [Google Scholar] [CrossRef][Green Version] - Löfberg, J. YALMIP: A Toolbox for Modeling and Optimization in MATLAB. 2004. Available online: https://ieeexplore.ieee.org/abstract/document/1393890 (accessed on 15 November 2020).

**Figure 1.**Observer-based robust tolerant predictive control scheme subject to faults and constraints.

**Figure 2.**(

**a**) The system states x

_{1}and x

_{2}subject to faults and their estimates. (

**b**) The system states x

_{3}and x

_{4}subject to faults and their estimates.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bououden, S.; Boulkaibet, I.; Chadli, M.; Abboudi, A. A Robust Fault-Tolerant Predictive Control for Discrete-Time Linear Systems Subject to Sensor and Actuator Faults. *Sensors* **2021**, *21*, 2307.
https://doi.org/10.3390/s21072307

**AMA Style**

Bououden S, Boulkaibet I, Chadli M, Abboudi A. A Robust Fault-Tolerant Predictive Control for Discrete-Time Linear Systems Subject to Sensor and Actuator Faults. *Sensors*. 2021; 21(7):2307.
https://doi.org/10.3390/s21072307

**Chicago/Turabian Style**

Bououden, Sofiane, Ilyes Boulkaibet, Mohammed Chadli, and Abdelaziz Abboudi. 2021. "A Robust Fault-Tolerant Predictive Control for Discrete-Time Linear Systems Subject to Sensor and Actuator Faults" *Sensors* 21, no. 7: 2307.
https://doi.org/10.3390/s21072307