Protection of Sensitive Loads in Distribution Systems Using a BSFCL-DVR System
Abstract
:1. Introduction
- Malfunction of protection equipment
- Tripping of process control and desktop computers
- Costly production wastage due to interruption of process materials
- Malfunction of wind turbine grid-side converters
- The superconducting coil can be used as an energy storage device in the DVR and limiting element in BSFCL. The proposed BSFCL-DVR system needs only one superconducting coil.
- The BSFCL only limits the transient fault current at the beginning time of fault and cannot limit the amplitude of the fault current. However, by using the BSFCL-DVR system, the fault current amplitude is limited as well as transient fault current.
- The DVR of the proposed structure can compensate steady-state load voltage under both normal and fault conditions.
- It can compensate sensitive load voltages during fault and prevent from a system outage.
- The voltage quality at the PCC is compensated; therefore the loads on parallel feeders would not affect during the fault period.
- The proposed BSFCL-DVR system increases the reliability of sensitive loads.
2. Bridge-Type SFCL
- It can suppress the transient fault current at the beginning time of fault without any delay;
- It requires any fault detection and controller system;
- It prevents from happening instantaneously deep voltage drop at the beginning time of the fault.
2.1. Power Circuit of Bridge-Type SFCL
2.2. BSFCL Characteristic
3. Dynamic Voltage Restorer
4. Proposed Structure
Control Strategy
5. Simulation Results
- Case A:
- No FCL is in operation,
- Case B:
- Conventional BSFCL is in operation and,
- Case C:
- DVR-BSFCL is employed.
5.1. Case A
5.2. Case B
5.3. Case C
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgements
Conflicts of Interest
References
- Bassan, F.R.; Rosolem, J.B.; Floridia, C.; Aires, B.N.; Peres, R.; Aprea, J.F.; Nascimento, C.A.M.; Fruett, F. Power-over-Fiber LPIT for Voltage and Current Measurements in the Medium Voltage Distribution Networks. Sensors 2021, 21, 547. [Google Scholar] [CrossRef] [PubMed]
- Pointl, M.; Fuchs-Hanusch, D. Assessing the Potential of LPWAN Communication Technologies for Near Real-Time Leak Detection in Water Distribution Systems. Sensors 2021, 21, 293. [Google Scholar] [CrossRef]
- Tosato, F.; Quaia, S. Reducing voltage sags through fault current limitation. IEEE Trans. Power Deliv. 2001, 16, 12–17. [Google Scholar] [CrossRef]
- Martinez, J.; Martin-Arnedo, J. Voltage Sag Studies in Distribution Networks—Part I: System Modeling. IEEE Trans. Power Deliv. 2006, 21, 1670–1678. [Google Scholar] [CrossRef]
- Martinez, J.; Martin-Arnedo, J. Voltage Sag Studies in Distribution Networks—Part II: Voltage Sag Assessment. IEEE Trans. Power Deliv. 2006, 21, 1679–1688. [Google Scholar] [CrossRef]
- Morandi, A. Fault Current Limiter: An Enabler for Increasing Safety and Power Quality of Distribution Networks. IEEE Trans. Appl. Supercond. 2013, 23, 57–64. [Google Scholar] [CrossRef]
- Firouzi, M. A modified capacitive bridge-type fault current limiter (CBFCL) for LVRT performance enhancement of wind power plants. Int. Trans. Electr. Energy Syst. 2018, 28, e2505. [Google Scholar] [CrossRef]
- Naghibi, S.E.; Mirzaie, M.; Barforoshi, T. Interline bridge-type fault current limiter: A novel approach for limiting fault current in distribution network. Int. Trans. Electr. Energy Syst. 2020, 30. [Google Scholar] [CrossRef]
- Heidary, A.; Radmanesh, H.; Rouzbehi, K.; Cheshmehbeigi, H.M. A Multifunction High-Temperature Superconductive Power Flow Controller and Fault Current Limiter. IEEE Trans. Appl. Supercond. 2020, 30, 1–8. [Google Scholar] [CrossRef]
- Ghanbari, T.; Farjah, E.; Naseri, F. Power quality improvement of radial feeders using an efficient method. Electr. Power Syst. Res. 2018, 163, 140–153. [Google Scholar] [CrossRef]
- Li, Y.W.; Vilathgamuwa, D.M.; Loh, P.C.; Blaabjerg, F. A Dual-Functional Medium Voltage Level DVR to Limit Downstream Fault Currents. IEEE Trans. Power Electron. 2007, 22, 1330–1340. [Google Scholar] [CrossRef]
- Jiang, F.; Cheng, S.; Tu, C.; Guo, Q.; Zhu, R.; Li, X.; Liserre, M. Design Consideration of a Dual-Functional Bridge-Type Fault Current Limiter. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 3825–3834. [Google Scholar] [CrossRef]
- Shuai, Z.; Yao, P.; Shen, Z.J.; Tu, C.; Jiang, F.; Cheng, Y. Design Considerations of a Fault Current Limiting Dynamic Voltage Restorer (FCL-DVR. IEEE Trans. Smart Grid 2015, 6, 14–25. [Google Scholar] [CrossRef]
- Ghavidel, P.; Farhadi, M.; Dabbaghjamanesh, M.; Jolfaei, A.; Sabahi, M. Fault Current Limiter Dynamic Voltage Restorer (FCL-DVR) with Reduced Number of Components. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021. [Google Scholar] [CrossRef]
- Guo, Q.; Tu, C.; Jiang, F.; Zhu, R.; Gao, J. Improved Dual-Functional DVR with Integrated Auxiliary Capacitor for Capacity Optimization. IEEE Trans. Ind. Electron. 2020. [Google Scholar] [CrossRef]
- Alaraifi, S.; Moawwad, A.; El Moursi, M.S.; Khadkikar, V. Voltage Booster Schemes for Fault Ride-Through Enhancement of Variable Speed Wind Turbines. IEEE Trans. Sustain. Energy 2013, 4, 1071–1081. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Abedi, M.; Gharehpetian, G.B. Power Flow Control of Interconnected AC–DC Microgrids in Grid-Connected Hybrid Microgrids Using Modified UIPC. IEEE Trans. Smart Grid 2019, 10, 6298–6307. [Google Scholar] [CrossRef]
- Goweily, K.; el Moursi, M.S.; Rahman, M.A.; Badr, M.A. Voltage booster scheme for enhancing the fault ride-through of wind turbines. IET Power Electron. 2015, 8, 1853–1863. [Google Scholar] [CrossRef]
- Firouzi, M.; Nasiri, M.; Benbouzid, M.; Gharehpetian, G.B. Application of multi-step bridge-type fault current limiter for fault ride-through capability enhancement of permanent magnet synchronous generator-based wind turbines. Int. Trans. Electr. Energy 2020, 30, e12611. [Google Scholar] [CrossRef]
- Firouzi, M.; Nasiri, M.; Mobayen, S.; Gharehpetian, G.B. Sliding Mode Controller-Based BFCL for Fault Ride-Through Performance Enhancement of DFIG-Based Wind Turbines. Complexity 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Shafiee, M.R.; Kartijkolaie, H.S.; Firouzi, M.; Mobayen, S.; Fekih, A. A Dynamic Multi-Cell FCL to Improve the Fault Ride through Capability of DFIG-Based Wind Farms. Energies 2020, 13, 6071. [Google Scholar] [CrossRef]
- Zheng, Z.; Xiao, X.; Huang, C.; Li, C. Enhancing Transient Voltage Quality in a Distribution Power System with SMES-Based DVR and SFCL. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Kamolyabutra, D.; Mitani, Y.; Tsuji, K. Power system stabilizing control and current limiting by a SMES with a series phase compensator. IEEE Trans. Appl. Supercond. 2001, 11, 1753–1756. [Google Scholar] [CrossRef]
- Suvire, G.O.; Mercado, P.E. Combined control of a distribution static synchronous compensator/flywheel energy storage system for wind energy applications. IET Gener. Transm. Distrib. 2012, 6, 483–492. [Google Scholar] [CrossRef]
- Kamolyabutra, D.; Mitani, Y.; Ise, T.; Tsuji, K. Experimental study on power system stabilizing control scheme for the SMES with solid-state phase shifter (SuperSMES). IEEE Trans. Appl. Supercond. 1999, 9, 326–329. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Wang, Z.; Jiang, X. Design and Research on a Multi-Functional Combined Device Incorporating a SMES. IEEE Trans. Appl. Supercond. 2007, 17, 2018–2021. [Google Scholar]
- Zhu, G.; Wang, Z.; Liu, X.; Zhang, G.; Jiang, X. Transient Behavior Research on the Combined Equipment of SMES-SFCL. IEEE Trans. Appl. Supercond. 2004, 14, 778–781. [Google Scholar] [CrossRef]
- Chen, L.; He, H.; Zhu, L.; Guo, F.; Shu, Z. Coordinated Control of SFCL and SMES for Transient Performance Improvement of Microgrid With Multiple DG Units. Can. J. Electr. Comput. Eng. 2016, 39, 158–167. [Google Scholar] [CrossRef]
- Ghanbari, T.; Farjah, E.; Zandnia, A. Development of a high-performance bridge-type fault current limiter. IET Gener. Transm. Distrib. 2014, 8, 486–494. [Google Scholar] [CrossRef]
- Moghimian, M.M.; Radmehr, M.; Firouzi, M. Series Resonance Fault Current Limiter (SRFCL) with MOV for LVRT Enhancement in DFIG-Based Wind Farms. Electr. Power Compon. Syst. 2020, 47, 1814–1825. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kim, J.-O.; Bae, I.-S.; Cha, J.-M. Distribution Reliability Evaluation Affected by Superconducting Fault Current Limiter. In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exposition, Sao Paulo, Brazil, 8–10 November 2010. [Google Scholar]
- Radmanesh, H.; Fathi, S.H.; Gharehpetian, G.B.; Heidary, A. Bridge-Type Solid-State Fault Current Limiter Based on AC/DC Reactor. IEEE Trans. Power Deliv. 2015, 31, 200–209. [Google Scholar] [CrossRef]
- Seo, H.; Kim, C.; Rhee, S.; Kim, J.; Hyon, O.B. Superconducting Fault Current Limiter Application for Reduction of the Transformer Inrush Current: A Decision Scheme of the Optimal Insertion Resistance. Trans. Appl. Supercond. 2010, 20, 2255–2264. [Google Scholar] [CrossRef]
- BatistadeSousa, W.T.; Kottonau, D.; Geisbuesch, J.; Karrari, S.; Noe, M. Deployment of a Resistive Superconducting Fault Current Limiter for Improvement of Voltage Quality and Transient Recovery Voltage. IEEE Trans. Appl. Supercond. 2020, 31. [Google Scholar] [CrossRef]
- Shirai, Y.; Furushiba, K.; Shouno, Y.; Shiotsu, M.; Nitta, T.; Shirai, Y.; Taguchi, M. Improvement of Power System Stability by Use of Superconducting Fault Current Limiter with ZnO Device and Resistor in Parallel. Trans. Appl. Supercond. 2008, 18, 680–683. [Google Scholar] [CrossRef]
- Song, W.; Pei, X.; Xi, J.; Zeng, X. A Novel Helical Superconducting Fault Current Limiter for Electric Propulsion Aircraft. IEEE Trans. Transp. Electrif. 2021. [Google Scholar] [CrossRef]
- Song, W.; Pei, X.; Zeng, X.; Yazdani-Asrami, M.; Fang, X.; Fang, J.; Jiang, Z. AC Losses in Noninductive SFCL Solenoidal Coils Wound by Parallel Conductors. Trans. Appl. Supercond. 2020, 30. [Google Scholar] [CrossRef]
- Tseng, H.; Chen, J. Quasi-bridge-type fault current limiter for mitigating fault transient phenomena. IET Gener. Transm. Distrib. 2014, 8, 1377–1391. [Google Scholar] [CrossRef]
- Kim, H.-R.; Yang, S.-E.; Yu, S.-D.; Kim, H.; Park, B.-J.; Han, Y.-H.; Park, K.; Yu, J. Development and Grid Operation of Superconducting Fault Current Limiters in KEPCO. IEEE Trans. Appl. Supercond. 2014, 24. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, J.C.; Lim, S.H. Study on Protection Coordination of a Flux-Lock-Type Superconducting Fault Current Limiter Using Switches. IEEE Trans. Appl. Supercond. 2016, 26. [Google Scholar] [CrossRef]
- Sato, T.; Yamaguchi, M.; Terashima, T.; Fuku, S.; Ogawa, J.; Shimizu, H.; Sato, T. Study on the Effect of Fault Current Limiter in Power System with Dispersed Generators. IEEE Trans. Appl. Supercond. 2007, 17, 2331–2334. [Google Scholar] [CrossRef]
- Choi, S.S.; Li, B.H.; Vilathgamuwa, D.M. Dynamic voltage restoration with minimum energy injection. IEEE Trans. Power Syst. 2000, 15, 51–57. [Google Scholar] [CrossRef]
- Niesen, J.G.; Blaabjerg, F.; Mohan, N. Control strategies for dynamic voltage restorer compensating voltage sags with phase jump. In Proceedings of the 16th Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 4–8 March 2001; Volume 2, pp. 1267–1273. [Google Scholar]
- Szcześniak, P. Comparison of control methods for a dynamic voltage restorer using a three-phase matrix converter. Simulation 2016, 92, 1053–1063. [Google Scholar] [CrossRef]
- Mohammadi, B.; Rabiei, A.; Moradi-Dalvand, M.; Mobayen, S. Online inter-area oscillation monitoring in power systems using PMU data and Prony analysis. Int. J. Phys. Sci. 2011, 6, 267–5272. [Google Scholar]
Parameters | Value | |
---|---|---|
Grid | Supply voltage(Vs) | 20 kV |
Frequency (f) | 50 Hz | |
Rs | 0.05 Ω | |
Ls | 1 mH | |
Step down transformer | 20 kV/6.6 kV 5 MVA | |
Line | Line resistance (R) | 0.2 (Ω/km) |
Line reactance (X) | 0.4 (Ω/km) | |
Length of feeder1 | 20 km | |
Length of feeder 2 | 10 km | |
Load | Impedance of common load | 1 MVA, PF = 0.9 lag |
Impedance of sensitive load | 1 MVA, PF = 0.8 lag | |
Proposed Structure | DVR port transformers | 4 kV/4 kV, 2 MVA |
Capacitor | 4 kV,1000 uF | |
SC inductance | 100 mH | |
Lf | 25 uH | |
Cf | 50 uF | |
frequency switching of chopper | 2 kH |
Order of Harmonics | Case B | Case C |
---|---|---|
1 | 0.5839 | 1 |
2 | 0.0289 | 0.0001 |
3 | 0.0088 | 0.0001 |
4 | 0.0155 | 0.0001 |
5 | 0.1087 | 0.0363 |
6 | 0.0303 | 0.0001 |
7 | 0.0489 | 0.0301 |
8 | 0.0219 | 0.0001 |
9 | 0.0121 | 0.0006 |
10 | 0.0162 | 0.0001 |
11 | 0.0381 | 0.0261 |
12 | 0.0189 | 0.0001 |
13 | 0.0316 | 0.0214 |
14 | 0.0282 | 0.0001 |
15 | 0.0431 | 0.0086 |
THD | 25.76% | 6.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firouzi, M.; Mobayen, S.; Kartijkolaie, H.S.; Nasiri, M.; Chen, C.-C. Protection of Sensitive Loads in Distribution Systems Using a BSFCL-DVR System. Sensors 2021, 21, 1615. https://doi.org/10.3390/s21051615
Firouzi M, Mobayen S, Kartijkolaie HS, Nasiri M, Chen C-C. Protection of Sensitive Loads in Distribution Systems Using a BSFCL-DVR System. Sensors. 2021; 21(5):1615. https://doi.org/10.3390/s21051615
Chicago/Turabian StyleFirouzi, Mehdi, Saleh Mobayen, Hossein Shahbabaei Kartijkolaie, Mojtaba Nasiri, and Chih-Chiang Chen. 2021. "Protection of Sensitive Loads in Distribution Systems Using a BSFCL-DVR System" Sensors 21, no. 5: 1615. https://doi.org/10.3390/s21051615
APA StyleFirouzi, M., Mobayen, S., Kartijkolaie, H. S., Nasiri, M., & Chen, C.-C. (2021). Protection of Sensitive Loads in Distribution Systems Using a BSFCL-DVR System. Sensors, 21(5), 1615. https://doi.org/10.3390/s21051615