Drowsiness Detection Based on Intelligent Systems with Nonlinear Features for Optimal Placement of Encephalogram Electrodes on the Cerebral Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. EEG Acquisition during Driving Tasks in Simulations
2.2. Participants and Experimental Conditions
2.3. Feature Extraction with Signal Processing
2.4. Classification of Drowsiness
2.5. Comfort Rating Scale of Measurements on Cerebral Areas
3. Results
3.1. Single Electrode Placement for EEG-Based DDS
3.2. Cerebral Area for EEG-Based DDS
3.3. Comfort Rating of Electrode Placement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, Y.; Han, S.I.; Kong, S.; Ko, H. Driver Status Monitoring Systems for Smart Vehicles Using Physiological Sensors. IEEE Signal Process. Mag. 2016, 33, 6. [Google Scholar] [CrossRef]
- Williamson, A.; Friswell, R.; Olivier, J.; Grzebieta, R. Are drivers aware of sleepiness and increasing crash risk while driving? Accid. Anal. Prev. 2014, 70, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.; Reyner, L. Vehicle accidents related to sleep: A review. Occup. Environ. Med. 1999, 56, 289–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahayadhas, A.; Sundaraj, K.; Murugappan, M. Detecting driver drowsiness based on sensors: A review. Sensors 2012, 12, 16937–16953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboalayon, K.A.I.; Faezipour, M.; Almuhammadi, W.S.; Moslehpour, S. Sleep stage classification using EEG signal analysis: A comprehensive survey and new investigation. Entropy 2016, 18, 272. [Google Scholar] [CrossRef]
- Boostani, R.; Karimzadeh, F.; Nami, M. A comparative review on sleep stage classification methods in patients and healthy individuals. Comput. Methods Programs Biomed. 2017, 140, 77–91. [Google Scholar] [CrossRef]
- Lin, C.T.; Chang, C.J.; Lin, B.S.; Hung, S.H.; Chao, C.F.; Wang, I.J. A real-time wireless brain-computer interface system for drowsiness detection. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 214–222. [Google Scholar] [CrossRef]
- Lin, F.C.; Ko, L.W.; Chuang, C.H.; Su, T.P.; Lin, C.T. Generalized EEG-based drowsiness prediction system by using a self-organizing neural fuzzy system. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2044–2055. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Kodagoda, S.; Lal, S.; Dissanayake, G. Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans. Biomed. Eng. 2011, 58, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.L.; Zhao, Y.; Zhang, J.; Zou, J.Z. Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst. Appl. 2015, 42, 7344–7355. [Google Scholar] [CrossRef]
- Mu, Z.; Hu, J.; Min, J. Driver Fatigue Detection System Using Electroencephalography Signals Based on Combined Entropy Features. Appl. Sci. 2017, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Wang, P.; Hu, J. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system. PLoS ONE 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.; Kwon, H.; Choi, S.H.; Park, K.S. Intelligent system for drowsiness recognition based on ear canal electroencephalography with photoplethysmography and electrocardiography. Inf. Sci. 2018, 453, 302–322. [Google Scholar] [CrossRef]
- Balandong, R.P.; Ahmad, R.F.; Mohamad Saad, M.N.; Malik, A.S. A Review on EEG-Based Automatic Sleepiness Detection Systems for Driver. IEEE Access 2018, 6, 22908–22919. [Google Scholar] [CrossRef]
- Lau-Zhu, A.; Lau, M.P.H.; McLoughlin, G. Mobile EEG in research on neurodevelopmental disorders: Opportunities and challenges. Dev. Cogn. Neurosci. 2019, 36, 100635. [Google Scholar] [CrossRef] [PubMed]
- Radüntz, T.; Meffert, B. User experience of 7 mobile electroencephalography devices: Comparative study. JMIR mHealth uHealth 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinberg, E.M. An overtraining-resistant stochastic modeling method for pattern recognition. Ann. Stat. 1996. [Google Scholar] [CrossRef]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995. [Google Scholar] [CrossRef]
- Yeo, M.V.M.; Li, X.; Shen, K.; Wilder-Smith, E.P.V. Can SVM be used for automatic EEG detection of drowsiness during car driving? Saf. Sci. 2009. [Google Scholar] [CrossRef]
- Acharya, J.N.; Hani, A.J.; Cheek, J.; Thirumala, P.; Tsuchida, T.N. American Clinical Neurophysiology Society Guideline 2: Guidelines for Standard Electrode Position Nomenclature. Neurodiagn. J. 2016, 56, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Di Matteo, T. Multi-scaling in finance. Quant. Financ. 2007, 7, 21–36. [Google Scholar] [CrossRef]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988. [Google Scholar] [CrossRef]
- Accardo, A.; Affinito, M.; Carrozzi, M.; Bouquet, F. Use of fractal dimension for the analysis of electroencephalographic time series. Biol. Cybern. 1997. [Google Scholar] [CrossRef]
- Şen, B.; Peker, M.; Çavuşoǧlu, A.; Çelebi, F.V. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J. Med. Syst. 2014. [Google Scholar] [CrossRef]
- Gu, Q.; Li, Z.; Han, J. Generalized Fisher Score for Feature Selection. arXiv 2012, arXiv:1202.3725. [Google Scholar]
- ETSC. The Role of Driver Fatigue in Commercial Road Transport Crashes; European Transport Safety Council: Brussels, Belgium, 2001; ISBN 907602409X. [Google Scholar]
- Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How Many Trees in A Random Forest? In International Workshop on Machine Learning and Data Mining in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2012; pp. 154–168. [Google Scholar]
- Chuang, C.H.; Huang, C.S.; Ko, L.W.; Lin, C.T. An EEG-based perceptual function integration network for application to drowsy driving. Knowl. Based Syst. 2015, 80, 143–152. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar] [CrossRef]
- Knight, J.F.; Baber, C. A tool to assess the comfort of wearable computers. Hum. Factors 2005. [Google Scholar] [CrossRef]
- Adamchic, I.; Langguth, B.; Hauptmann, C.; Tass, P.A. Psychometric evaluation of visual analog scale for the assessment of chronic tinnitus. Am. J. Audiol. 2012. [Google Scholar] [CrossRef]
- Bourdel, N.; Alves, J.; Pickering, G.; Ramilo, I.; Roman, H.; Canis, M. Systematic review of endometriosis pain assessment: How to choose a scale? Hum. Reprod. Update 2015. [Google Scholar] [CrossRef]
- Garra, G.; Singer, A.J.; Taira, B.R.; Chohan, J.; Cardoz, H.; Chisena, E.; Thode, H.C. Validation of the Wong-Baker FACES pain rating scale in pediatric emergency department patients. Acad. Emerg. Med. 2010. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Jackel, L.D.; Solla, S.A.; Vapnik, V.; Denker, J.S. Learning Curves: Asymptotic Values and Rate of Convergence. Adv. Neural Inf. Process. Syst. 1994. [Google Scholar] [CrossRef]
- Figueroa, R.L.; Zeng-Treitler, Q.; Kandula, S.; Ngo, L.H. Predicting sample size required for classification performance. BMC Med. Inform. Decis. Mak. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpern, M.E.; Güntürkün, O.; Hopkins, W.D.; Rogers, L.J. Lateralization of the vertebrate brain: Taking the side of model systems. J. Neurosci. 2005, 25, 10351–10357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Looney, D.; Kidmose, P.; Park, C.; Ungstrup, M.; Rank, M.; Rosenkranz, K.; Mandic, D. The in-the-ear recording concept: User-centered and wearable brain monitoring. IEEE Pulse 2012. [Google Scholar] [CrossRef] [PubMed]
- LaRocco, J.; Le, M.D.; Paeng, D.G. A Systemic Review of Available Low-Cost EEG Headsets Used for Drowsiness Detection. Front. Neuroinform. 2020, 14, 553352. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.L.; Lu, B.L. A multimodal approach to estimating vigilance using EEG and forehead EOG. J. Neural Eng. 2017. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.Q.; Ong, C.J.; Li, X.P.; Hui, Z.; Wilder-Smith, E.P.V. A feature selection method for multilevel mental fatigue EEG classification. IEEE Trans. Biomed. Eng. 2007. [Google Scholar] [CrossRef]
- Budak, U.; Bajaj, V.; Akbulut, Y.; Atila, O.; Sengur, A. An effective hybrid model for EEG-based drowsiness detection. IEEE Sens. J. 2019. [Google Scholar] [CrossRef]
- Bajaj, V.; Taran, S.; Khare, S.K.; Sengur, A. Feature extraction method for classification of alertness and drowsiness states EEG signals. Appl. Acoust. 2020. [Google Scholar] [CrossRef]
- Awais, M.; Badruddin, N.; Drieberg, M. A hybrid approach to detect driver drowsiness utilizing physiological signals to improve system performance and Wearability. Sensors 2017, 17, 1991. [Google Scholar] [CrossRef] [Green Version]
- Chai, R.; Naik, G.R.; Nguyen, T.N.; Ling, S.H.; Tran, Y.; Craig, A.; Nguyen, H.T. Driver Fatigue Classification with Independent Component by Entropy Rate Bound Minimization Analysis in an EEG-Based System. IEEE J. Biomed. Health Inform. 2017, 21, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Hu, J. Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals. Front. Comput. Neurosci. 2017, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belakhdar, I.; Kaaniche, W.; Djemal, R.; Ouni, B. Single-channel-based automatic drowsiness detection architecture with a reduced number of EEG features. Microprocess. Microsyst. 2018, 58, 13–23. [Google Scholar] [CrossRef]
- Ogino, M.; Mitsukura, Y. Portable drowsiness detection through use of a prefrontal single-channel electroencephalogram. Sensors 2018, 18, 4477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleichner, M.G.; Lundbeck, M.; Selisky, M.; Minow, F.; Jager, M.; Emkes, R.; Debener, S.; De Vos, M. Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see? Physiol. Rep. 2015, 3, e12362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Srinivasan, R.; Quinlan, E.B.; Solodkin, A.; Small, S.L.; Cramer, S.C. Utility of EEG measures of brain function in patients with acute stroke. J. Neurophysiol. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.; Müller, K.R.; Schmitz, C.H.; Kim, D.W.; Hwang, H.J. Evaluation of a Compact Hybrid Brain-Computer Interface System. Biomed. Res. Int. 2017. [Google Scholar] [CrossRef] [PubMed]
Ch. | 30-s EEG | 180-s EEG | ||||||
---|---|---|---|---|---|---|---|---|
S 1 | N 2 | S + N | Δaccuracy 3 | S | N | S + N | Δaccuracy | |
Fp1 | 92.84 | 87.48 | 94.51 | 1.67 | 97.83 | 96.89 | 97.29 | 0.54 |
Fp2 | 92.94 | 93.47 | 94.94 | 2.00 | 98.03 | 96.26 | 97.64 | 0.39 |
F3 | 88.35 | 89.74 | 89.86 | 1.51 | 96.86 | 96.59 | 98.38 | 1.52 |
F4 | 88.26 | 90.74 | 93.82 | 5.56 | 96.90 | 97.19 | 97.93 | 1.03 |
C3 | 80.84 | 86.16 | 89.01 | 8.17 | 97.60 | 95.82 | 96.73 | 0.87 |
C4 | 86.33 | 91.88 | 90.99 | 4.66 | 94.28 | 96.45 | 96.73 | 2.45 |
T7 | 88.12 | 91.99 | 91.72 | 3.60 | 96.58 | 97.00 | 97.81 | 1.23 |
T8 | 89.17 | 91.45 | 91.19 | 2.02 | 97.40 | 97.24 | 94.92 | 2.48 |
FT9 | 89.85 | 89.36 | 92.23 | 2.38 | 97.20 | 96.77 | 97.83 | 0.63 |
FT10 | 91.57 | 89.51 | 90.97 | 0.60 | 95.79 | 95.51 | 98.07 | 2.28 |
P7 | 87.97 | 89.26 | 91.21 | 3.24 | 96.59 | 96.06 | 95.74 | 0.85 |
P8 | 89.36 | 91.51 | 88.55 | 0.81 | 95.81 | 95.82 | 96.80 | 0.99 |
Fz | 88.48 | 89.01 | 88.18 | 0.30 | 96.86 | 94.76 | 97.13 | 0.27 |
Cz | 83.60 | 89.24 | 85.06 | 1.46 | 95.84 | 96.42 | 97.96 | 2.12 |
Pz | 80.59 | 83.12 | 84.51 | 3.92 | 96.52 | 94.69 | 96.98 | 0.46 |
Oz | 83.26 | 86.32 | 87.82 | 4.56 | 97.24 | 94.06 | 97.63 | 0.39 |
Mean | 87.60 | 89.39 | 90.29 | 2.90 | 96.71 | 96.10 | 97.22 | 1.16 |
Ch. | 30-s EEG | 180-s EEG | ||||||
---|---|---|---|---|---|---|---|---|
S 1 | N 2 | S + N | Δaccuracy 3 | S | N | S + N | Δaccuracy | |
Fp1 | 93.84 | 94.62 | 96.41 | 2.57 | 97.74 | 97.50 | 98.33 | 0.59 |
Fp2 | 93.21 | 94.07 | 96.41 | 3.20 | 96.92 | 98.30 | 98.26 | 1.34 |
F3 | 88.70 | 93.24 | 93.86 | 5.16 | 97.15 | 97.31 | 98.51 | 1.36 |
F4 | 89.36 | 91.53 | 93.19 | 3.83 | 96.74 | 96.93 | 98.04 | 1.30 |
C3 | 86.43 | 92.25 | 91.51 | 5.08 | 98.58 | 97.77 | 97.82 | 0.76 |
C4 | 88.68 | 90.58 | 91.43 | 2.75 | 97.96 | 97.78 | 98.98 | 1.02 |
T7 | 88.37 | 92.24 | 92.61 | 4.24 | 96.76 | 96.66 | 97.71 | 0.95 |
T8 | 86.57 | 90.25 | 93.24 | 6.67 | 97.23 | 96.98 | 98.61 | 1.38 |
FT9 | 91.04 | 89.25 | 94.03 | 2.99 | 97.46 | 97.84 | 97.11 | 0.35 |
FT10 | 91.14 | 91.53 | 93.29 | 2.15 | 97.90 | 95.78 | 97.75 | 0.15 |
P7 | 85.67 | 88.02 | 91.65 | 5.98 | 96.79 | 96.37 | 95.55 | 1.24 |
P8 | 86.86 | 91.83 | 92.40 | 5.54 | 96.67 | 96.91 | 98.28 | 1.61 |
Fz | 90.26 | 89.14 | 93.93 | 3.67 | 97.06 | 97.86 | 98.46 | 1.40 |
Cz | 84.28 | 85.48 | 87.69 | 3.41 | 97.79 | 96.91 | 97.61 | 0.18 |
Pz | 82.53 | 85.43 | 86.86 | 4.33 | 98.04 | 96.03 | 98.54 | 0.50 |
Oz | 84.83 | 89.22 | 90.01 | 5.18 | 96.40 | 96.94 | 97.80 | 1.40 |
Mean | 88.24 | 90.54 | 92.41 | 4.17 | 97.32 | 97.12 | 97.96 | 0.97 |
Feature | Area | 30 s | 60 s | 90 s | 120 s | 150 s | 180 s |
---|---|---|---|---|---|---|---|
S 1 | F 3 | 95.95 | 96.08 | 95.72 | 98.03 | 97.60 | 98.36 |
C | 88.54 | 93.19 | 95.91 | 96.22 | 95.89 | 98.24 | |
T | 94.46 | 95.25 | 96.49 | 98.56 | 96.34 | 98.46 | |
PO | 91.43 | 94.04 | 97.04 | 97.57 | 96.68 | 97.22 | |
All | 95.87 | 97.43 | 97.91 | 98.30 | 97.19 | 98.52 | |
N 2 | F | 96.34 | 97.03 | 96.59 | 96.85 | 97.48 | 98.38 |
C | 94.48 | 94.98 | 97.05 | 97.78 | 95.76 | 98.17 | |
T | 95.98 | 95.49 | 97.38 | 98.26 | 97.84 | 98.47 | |
PO | 96.53 | 96.01 | 97.37 | 97.21 | 97.54 | 97.73 | |
All | 97.33 | 98.00 | 97.83 | 97.74 | 98.39 | 98.28 | |
S + N | F | 97.27 | 97.50 | 96.69 | 98.27 | 98.23 | 98.50 |
C | 95.13 | 96.42 | 97.00 | 97.56 | 97.08 | 97.99 | |
T | 96.70 | 96.89 | 97.60 | 98.11 | 97.70 | 99.13 | |
PO | 96.78 | 96.80 | 97.17 | 98.51 | 97.12 | 98.61 | |
All | 97.52 | 97.78 | 97.78 | 98.82 | 97.37 | 99.20 |
Author | Representative Classifier | Channel # (Area) | Accuracy [%] | Participants # (age) |
---|---|---|---|---|
Chai et al. | Bayesian Neural Network | 32 | 88.2 | 43 (18–55 years) |
Hu et al. | Adaptive Boosting | 30 | 97.5 | 28 (19–24 years) |
Min et al. | Back propagation Neural Network | 30 | 98.3 | 12 (19–24 years) |
Awais et al. | SVM | 5 (C3, P4, P7, O1, O2) | 76.4 | 22 (18–35 years) |
Umit et al. | Pretrained AlexNet, VGG16 + LSTM | 3 (C3-O1, C4, O2) | 94.3 | 16 (average: 43 years) |
Bajaj et al. | ELM | 3 (C3-O1, C4, O2) | 91.8 | |
Present study | SVM | 4 (T7, T8, FT9, FT10) 4 (Oz, Pz, P3, P4) 16 | 99.13 (180-s) 99.25 (210-s) 99.4 (270-s) | 16 (25–32 years) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.; Baek, H.J. Drowsiness Detection Based on Intelligent Systems with Nonlinear Features for Optimal Placement of Encephalogram Electrodes on the Cerebral Area. Sensors 2021, 21, 1255. https://doi.org/10.3390/s21041255
Hong S, Baek HJ. Drowsiness Detection Based on Intelligent Systems with Nonlinear Features for Optimal Placement of Encephalogram Electrodes on the Cerebral Area. Sensors. 2021; 21(4):1255. https://doi.org/10.3390/s21041255
Chicago/Turabian StyleHong, Seunghyeok, and Hyun Jae Baek. 2021. "Drowsiness Detection Based on Intelligent Systems with Nonlinear Features for Optimal Placement of Encephalogram Electrodes on the Cerebral Area" Sensors 21, no. 4: 1255. https://doi.org/10.3390/s21041255