FOD Detection Method Based on Iterative Adaptive Approach for Millimeter-Wave Radar
Abstract
:1. Introduction
2. Models
3. Detection Method
3.1. Interference Suppression and Super-Resolution Based on IAA
Algorithm 1 Interference suppression and super-resolution algorithm based on IAA |
Initialization: |
Repeat |
fork = 1, 2, …, K |
end for |
until (convergence) |
3.2. FOD Detection Method
- Step 1:
- Data preprocessing. First, the estimation of clutter background intensity is obtained by averaging the measured values of previous multiple scans of the runway scene without targets. After iterative averaging, the clutter map storage value becomes more and more stable, and the clutter change amplitude becomes smaller and smaller, which can reduce the false alarm rate. The adaptive clutter map CFAR technology is used to obtain the coarse FOD target information. This is the general detection method of conventional FOD radar.
- Step 2:
- Refined data processing. First, use standard instruments to acquire the radar antenna pattern data by far field measurement method, which can be normalized for subsequent processing. Then, according to the coarse FOD target information obtained in Step 1, the original data of the same range bin corresponding to the FOD target position will be reprocessed by IAA in the azimuth direction. Finally, the CFAR detection processing is performed again.
- Step 3:
- Information fusion processing.Through the processing of the above two steps, the coarse FOD target information obtained by Step 1 and the second detection FOD target information acquired by Step 2 are used to comprehensively distinguish false alarms by fusion processing of multiple information, in order to obtain accurate FOD target information.
4. Experimental Scenarios
4.1. Radar Sensor
4.2. Test Scenarios
5. Results and Discussion
5.1. Scene 1
5.2. Scene 2
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foreign Object Debris Detection Equipment, Document Advisory Circular; (AC)150/5220-24; Federal Aviation Administration: Washington, DC, USA, September 2009. Available online: https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_150_5220-24.pdf (accessed on 20 April 2017).
- Mazouni, K.; Zeitler, A.; Lanteri, J.; Pichot, C.; Dauvignac, J.; Migliaccio, C.; Yonemoto, N.; Kohmura, A.; Futatsumori, S. 76.5 GHz millimeter-wave radar for foreign object debris detection on airport runways. In Proceedings of the 2011 8th European Radar Conference, Manchester, UK, 12–14 October 2011; pp. 222–225. [Google Scholar]
- Feil, P.; Menzel, W.; Nguyen, T.P.; Pichot, C.; Migliaccio, C. Foreign objects debris detection (fod) on airport runways using a broadband 78 GHz sensor. In Proceedings of the 2008 38th European Microwave Conference, Amsterdam, The Netherlands, 27–31 October 2008; pp. 1608–1611. [Google Scholar]
- Mazouni, K.; Kohmura, A.; Futatsumori, S.; Yonemoto, N.; Dauvignac, J.Y.; Pichot, C.; Migliaccio, C. 77 GHz fm-cw radar for fods detection. In Proceedings of the 7th European Radar Conference, Paris, France, 30 September–1 October 2010; pp. 451–454. [Google Scholar]
- Brown, A.K. A review of radar as a sensor for advanced surface movement guidance and control systems (A-SMGCS). In Proceedings of the IEE Aviation Surveillance Systems, London, UK, 23 January 2002. [Google Scholar]
- Mehdi, G.; Miao, J. Millimeter wave fmcw radar for foreign object debris (fod) detection at airport runways. In Proceedings of the 2012 9th International Bhurban Conference on Applied Sciences & Technology (IBCAST), Islamabad, Pakistan, 9–12 January 2012; pp. 407–412. [Google Scholar]
- Guo, J.; Luo, Y.; Sui, Y.F.; Yan, D.Q.; Zhong, Q. Airport runway fod detection from lfmcw radar and image data. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Stafa, Switzerland, 2015; Volume 719, pp. 1124–1131. [Google Scholar]
- Futatsumori, S.; Morioka, K.; Kohmura, A.; Okada, K.; Yonemoto, N. Design and field feasibility evaluation of distributed-type 96 GHz fmcw millimeter-wave radar based on radio-over-fiber and optical frequency multiplier. J. Lightwave Technol. 2016, 34, 4835–4843. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, C.; Yang, B.; Yao, X.; Miao, J. Design procedures and considerations of fod detection millimeter-wave fmcw radar. In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; pp. 1612–1617. [Google Scholar]
- Conte, E.; Longo, M.; Lops, M. Performance analysis of ca-cfar in the presence of compound gaussian clutter. Electron. Lett. 1988, 24, 782–783. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Zhong, Q.; Li, H.; Yu, X. Performance analysis and comparison of cfar methods for fod detection in airport runway environment. In Proceedings of the 2015 International Conference on Communications, Signal Processing, and Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 443–451. [Google Scholar]
- Han, Y.I.; Kim, T. Performance of excision go-cfar detectors in nonhomogeneous environments. IEE Proc. Radar Sonar Navig. 1996, 143, 105–112. [Google Scholar] [CrossRef]
- Levanon, N. Detection loss due to interfering targets in ordered statistics cfar. IEEE Trans. Aerosp. Electron. Syst. 1988, 24, 678–681. [Google Scholar] [CrossRef] [Green Version]
- Sciotti, M.; Lombardo, P. Performance evaluation of radar detection schemes based on ca-cfar against k-distributed clutter. In Proceedings of the 2001 CIE International Conference on Radar Proceedings (Cat No.01TH8559), Beijing, China, 15–18 October 2001; pp. 345–349. [Google Scholar]
- Jin, E.; Yan, D.; Zhang, Z.; Zhong, Q.; Yu, X. Fod detection on airport runway with clutter map cfar plane technique. In Communications, Signal Processing, and Systems; Springer: New York, NY, USA, 2012. [Google Scholar]
- Nitzberg, R. Clutter map cfar analysis. IEEE Trans. Aerosp. Electron. Syst. 1986, 22, 419–421. [Google Scholar] [CrossRef]
- Meng, X. Performance analysis of nitzberg’s clutter map for weibull distribution. Digit. Signal Process. 2010, 20, 916–922. [Google Scholar] [CrossRef]
- Naldi, M. False alarm control and self-masking avoidance by a biparametric clutter map in a mixed interference environment. IEE Proc. Radar Sonar Navig. 2002, 146, 195–200. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Yu, X.; Wang, X.; Zhao, M. CFAR detection method in multi-target environments for foreign object debris surveillance radar. In Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Yang, X.; Huo, K.; Su, J.; Zhang, X.; Jiang, W. An anti-fod method based on ca-cm-cfar for mmw radar in complex clutter background. Sensors 2020, 20, 1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Liu, J.; Zheng, X.; He, M.; Xiao, Q. A hierarchical fod detection method based on eigenvalue spectrum features. J. Electron. Inf. Technol. 2017, 39, 2690–2696. [Google Scholar]
- Wang, B.; Zhu, L.; Li, Z.; Wang, X.; Hu, H. A hierarchical foreign object debris detection method using millimeter wave radar. J. Electron. Inf. Technol. 2018, 40, 2676–2683. [Google Scholar]
- Lai, Y.-K. Foreign object debris detection method based on fractional fourier transform for millimeter-wave radar. J. Appl. Remote Sens. 2020, 14, 016508. [Google Scholar] [CrossRef]
- Ni, P.; Miao, C.; Tang, H.; Jiang, M.; Wu, W. Small foreign object debris detection for millimeter-wave radar based on power spectrum features. Sensors 2020, 20, 2316. [Google Scholar] [CrossRef] [Green Version]
- Yardibi, T.; Li, J.; Stoica, P.; Xue, M.; Baggeroer, A.B. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 425–443. [Google Scholar] [CrossRef]
- Roberts, W.; Stoica, P.; Li, J.; Yardibi, T.; Sadjadi, F.A. Iterative adaptive approaches to mimo radar imaging. IEEE J. Sel. Top. Signal Process 2010, 4, 5–20. [Google Scholar] [CrossRef]
- Chai, H.; Lv, X. Sar tomography for point-like and volumetric scatterers using a regularised iterative adaptive approach. Remote Sens. Lett. 2018, 9, 1060–1069. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Huang, Y.; Zhang, Y.; Yang, J. Two-channel iterative adaptive approach for scanning radar angular superresolution. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016. [Google Scholar]
- Zhang, Y.; Jakobsson, A.; Yang, J. Range-recursive iaa for scanning radar angular super-resolution. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1675–1679. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Huang, Y.; Li, W.; Yang, J.; Yang, H. Advantages and challenges of power spectral density estimation methods for scanning radar angular superresolution. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Huang, Y.; Li, W.; Yang, J. Angular superresolution for scanning radar with improved regularized iterative adaptive approach. IEEE Geosci. Remote Sens. Lett. 2016, 13, 846–850. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, W.; Huang, Y.; Yang, J. Super-resolution surface mapping for scanning radar: Inverse filtering based on the fast iterative adaptive approach. IEEE Trans. Geosci. Remote 2017, 56, 127–144. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Zhang, Y.; Huang, Y.; Yang, J. A fast iterative adaptive approach for scanning radar angular superresolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5336–5345. [Google Scholar] [CrossRef]
- Qi, L.; Yu, W.; Zheng, M.; Hou, L. Detection and parameter estimation of ground moving targets in multichannel wide-area surveillance system based on iterative adaptive approach. IET Radar Sonar Navig. 2016, 10, 1145–1152. [Google Scholar] [CrossRef]
- Qi, L.; Zheng, M.; Yu, W.; Li, N.; Hou, L. Super-resolution doppler beam sharpening imaging based on an iterative adaptive approach. Remote Sens. Lett. 2016, 7, 259–268. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, W.; Huang, Y.; Yang, J. Angular superresolution for real beam radar with iterative adaptive approach. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS2014), Melbourne, Australia, 21–26 July 2013. [Google Scholar]
- Petrov, N.; Le Chevalier, F.; Yarovoy, A. Detection of range migrating targets in compound-gaussian clutter. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 37–50. [Google Scholar] [CrossRef]
- Petrov, N.; Le Chevalier, F. Iterative adaptive approach for unambiguous wideband radar target detection. In Proceedings of the 2015 European Radar Conference (EuRAD), Paris, France, 9–11 September 2015; pp. 45–48. [Google Scholar]
- Glentis, G.O.; Jakobsson, A. Time-recursive iaa spectral estimation. IEEE Signal Process. Lett. 2010, 18, 111–114. [Google Scholar] [CrossRef]
- Islam, S.M.; Yavari, E.; Rahman, A.; Lubecke, V.M.; Boric-Lubecke, O. Separation of respiratory signatures for multiple subjects using independent component analysis with the jade algorithm. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018. [Google Scholar]
- Islam, S.M.M.; Boric-Lubecke, O.; Lubekce, V.M. Concurrent respiration monitoring of multiple subjects by phase-comparison monopulse radar using independent component analysis (ica) with jade algorithm and direction of arrival (doa). IEEE Access 2020, 8, 73558–73569. [Google Scholar] [CrossRef]
Parameter | Value | Units |
---|---|---|
Carrier frequency | 93 | GHz |
Band width | 2 | GHz |
Antenna scanning velocity | 15 | degrees/s |
Azimuth main-lobe beamwidth | 0.6 | degree |
Elevation main-lobe beamwidth | 4 | degrees |
Antenna scanning area | −40∼+70 | degrees |
Pulse repetition frequency | 1000 | Hz |
Target | FOD 1 | FOD 2 | FOD 3 | FOD 4 | FOD 5 | FOD 6 |
---|---|---|---|---|---|---|
16.2 | 10.1 | 12.2 | 18.3 | 13.8 | 12 | |
2.2 | 2.1 | 2.4 | 3.1 | 2.1 | 2.6 |
Target | FOD 1 | FOD 2 | FOD 3 | FOD 4 | FOD 5 | FOD 6 | FOD 7 |
---|---|---|---|---|---|---|---|
9.8 | 8 | 10 | 8.2 | 12.3 | 15.2 | 14 | |
1.8 | 1.3 | 1.4 | 2 | 2.2 | 1.7 | 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Liang, X.; Bu, X.; Liu, Y. FOD Detection Method Based on Iterative Adaptive Approach for Millimeter-Wave Radar. Sensors 2021, 21, 1241. https://doi.org/10.3390/s21041241
Wan Y, Liang X, Bu X, Liu Y. FOD Detection Method Based on Iterative Adaptive Approach for Millimeter-Wave Radar. Sensors. 2021; 21(4):1241. https://doi.org/10.3390/s21041241
Chicago/Turabian StyleWan, Yangliang, Xingdong Liang, Xiangxi Bu, and Yunlong Liu. 2021. "FOD Detection Method Based on Iterative Adaptive Approach for Millimeter-Wave Radar" Sensors 21, no. 4: 1241. https://doi.org/10.3390/s21041241
APA StyleWan, Y., Liang, X., Bu, X., & Liu, Y. (2021). FOD Detection Method Based on Iterative Adaptive Approach for Millimeter-Wave Radar. Sensors, 21(4), 1241. https://doi.org/10.3390/s21041241