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Abstract: Using millimeter-wave radar to scan and detect small foreign object debris (FOD) on
an airport runway surface is a popular solution in civil aviation safety. Since it is impossible to
completely eliminate the interference reflections arising from strongly scattering targets or non-
homogeneous clutter after clutter cancellation processing, the consequent high false alarm probability
has become a key problem to be solved. In this article, we propose a new FOD detection method for
interference suppression and false alarm reduction based on an iterative adaptive approach (IAA)
algorithm, which is a non-parametric, weighted least squares-based iterative adaptive processing
approach that can provide super-resolution capability. Specifically, we first obtain coarse FOD
target information by data preprocessing in a conventional detection method. Then, a refined data
processing step is conducted based on the IAA algorithm in the azimuth direction. Finally, multiple
pieces of information from the two steps above are used to comprehensively distinguish false alarms
by fusion processing; thus, we can acquire accurate FOD target information. Real airport data
measured by a 93 GHz radar are used to validate the proposed method. Experimental results of
the test scene, which include golf balls with a diameter of 43 mm, were placed about 300 m away
from radar, which show that the proposed method can effectively reduce the number of false alarms
when compared with a traditional FOD detection method. Although metal balls with a diameter
of 50 mm were placed about 660 m away from radar, they also can obtain up to 2.2 times azimuth
super-resolution capability.

Keywords: foreign object debris (FOD); millimeter-wave radar; iterative adaptive approach (IAA);
interference suppression; false alarms reduction; super-resolution

1. Introduction

Foreign object debris (FOD) can severely injure airport or airline personnel or damage
equipment [1]. Considering the huge losses caused by FOD, radar-based FOD detection
deserves more attention, due to its many advantages at all times and under all weather
conditions [2–4]. Compared with infrared, laser, TV, and other optical sensors, millimeter-
wave radar has a stronger ability to penetrate fog, smoke, and dust, while having the
characteristics of high spatial resolution [5–8]. Therefore, millimeter-wave radar techniques
for detecting FOD have become a research hot spot.

When a millimeter-wave radar scans an entire runway, the received echo not only
contains the reflection information of the target, but also contains clutter and interference
signals generated by the ground, nearby buildings, airplanes, and cars beside the runway.
A commonly used method is the constant false alarm rate (CFAR) detection algorithm.
There are two common methods for implementing a constant false alarm rate (CFAR)
processor [9]. In one, the detector outputs of nearby cells (range and/or azimuth) are
averaged to obtain a background estimate, which is used for thresholding in the space
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domain. These methods include cell-average CFAR (CA-CFAR) [10,11], the greatest or
smallest option (GO or SO) [12], and ordered statistic (OS) [13] techniques. When the
clutter background becomes complicated or the target is in a non-homogeneous clutter
environment, the detection performance of these methods may be greatly degraded [14].
In the other type of method, the detector output of each resolution cell is averaged over
several scans, in order to obtain the background estimate—namely, the clutter-map (CM)—
in the time domain. Although many improved algorithms have been proposed, they
still have certain performance limitations [15–18]. Meanwhile, some hybrid methods are
proposed for FOD detection in W band radar. A method of trimmed-mean clutter-map
CFAR detection based on OS is proposed in multiple target environments [19]. In [20], the
authors presented a threshold-improved approach based on the cell-averaging clutter-map
(CA-CM-) CFAR. The clutter map Constant False Alarm Rate (CFAR) detection algorithm
is utilized firstly to categorize radar echoes into two kinds, then a novel hierarchical FOD
detection method is proposed based on feature extraction and support vector domain
description [21–24]. Due to the clutter and interference, the detection results of CFAR and
improved-CFAR methods are often simultaneously accompanied by many false alarms.
The high false alarm probability of weak target detection under strong complex and non-
homogeneous clutter background remains a key problem.

Recently, the iterative adaptive approach (IAA) [25], which is a non-parametric,
weighted least squares-based iterative adaptive processing approach, has been adopted
for high-resolution scanning radar images, in order to estimate signal amplitude and
phase [26–29]. IAA is a super-resolution algorithm which offers superior interference and
noise suppression performance when few snapshots are available and the signal-to-noise
ratio (SNR) is low [30–34]. Based on the above analysis, we introduce an IAA technique for
the signal processing of FOD targets, suppressing the dispersive and residual interference
which comes from strongly scattering targets or non-homogeneous clutter after clutter
cancellation processing. This method uses the adaptive iteration of the IAA algorithm to
estimate the part of the clutter component during each iteration and eliminate its influence
from the measured data, thereby achieving interference suppression. To verify the practi-
cal effect of this method, a W-band linear frequency modulation continuous wave radar
was used to collect data at a general aviation airport in Beijing, China. Based on the ac-
quired data, we compared the proposed method with a traditional FOD detection method.
The proposed method can effectively eliminate the false targets caused by strong target
side-lobe interference and the single discrete clutter component after clutter cancellation
processing, while the clutter background is simultaneously smoothed. Overlapping targets
in the same range bin can also be distinguished effectively, and the azimuth resolution is
improved. Therefore, the method proposed in this paper can actually be used to improve
the detection of foreign object debris on airport runways.

This paper is organized as follows: The geometric and signal models of the real
aperture FOD scanning radar are described in Section 2. In Section 3, the detection method
based on IAA is derived in detail. Section 4 describes the experimental scenarios. The
processed results of real data and the discussion are presented in Section 5. The conclusions
and final discussion are drawn in Section 6.

2. Models

An FOD millimeter-wave detection radar is generally deployed on both sides of the
runway, where the radar antenna scans and illuminates the rough runway surface. The
geometric model of FOD millimeter-wave radar illumination is shown in Figure 1.
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Figure 1. Geometry of FOD millimeter-wave radar illumination.

The radar needs to detect small foreign objects within a short distance, which requires
the radar to have the smallest possible distance blind zone and higher range resolution.
A millimeter-wave radar usually uses the linear frequency modulation continuous wave
system, assuming that the transmitted signal is

s(τ) = exp[j2π( f0τ +
1
2

uτ2)],−T
2
≤ τ ≤ T

2
, (1)

where τ denotes the fast time, f0 is the center frequency of the signal, u = B/T is the
frequency modulation rate of the chirp signal, B is frequency sweep bandwidth, T is
frequency sweep cycle, and the target echo signals at different distances can be expressed as

sR(τ) = exp[j2π( f0(τ − τd) +
1
2

u(τ − τd)
2)],−T

2
≤ τ ≤ T

2
, (2)

where τd = 2R/c is the echo delay caused by the target, R is the target slant range, and c
is the velocity of light. The difference frequency signal can be obtained after mixing and
filtering the echo signal

sb(τ) = s(τ)× s∗R(τ) = exp{j2π[u
2R
c

τ − u
2R2

c2 +
2R
λ
]},−T

2
≤ τ ≤ T

2
, (3)

where s∗R(τ) is the conjugate of sR(τ), Equation (3) is the “matched filter” processing of the

LFMCW. This signal is a single-frequency signal with a frequency of f1 = u
2R
c

, where λ is
the radar wavelength. After Fast Fourier Transform (FFT) processing, the range echo can
be expressed as

Sb( f ) = Tsinc[T( f − f1)]expj2π[−u
2R2

c2 +
2R
λ
]. (4)

Performing the time–frequency substitution of f → τ yields

Sb(τ) = Tsinc[T(uτ − u
2R
c
)]expj2π[−u

2R2

c2 +
2R
λ
] = Tsinc[B(τ − 2R

c
)]expj2π[−u

2R2

c2 +
2R
λ
]. (5)
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After the range “matched filter” and Fast Fourier Transform (FFT) processing (we call it
“range compression”), the range-azimuth two-dimensional echo signal can be expressed as

g(t, τ) =
M

∑
j=1

N

∑
i=1

σijh(t)sinc[B(τ − 2R
c
)]exp[j2π(−u

2R2

c2 +
2R
λ
)], (6)

where t is the slow time, N is the number of range sampling points, and M is the number
of azimuth sampling points, σij means the scatting amplitude of target located at ith range
and jth azimuth bin, and h(t) is the antenna pattern modulation function.

In scanning radar surface mapping, the azimuth echo can be regarded as the convolu-
tion result between the antenna pattern and the reflectivity function. The recorded echo
data by radar is inevitably mixed with ground clutter and noise components, although
clutter cancellation processing is performed before target detection. A signal model of the
target azimuth echo for the scanning FOD millimeter-wave radar is shown in Figure 2. For
each range unit, the discrete signal model of the target azimuth echo y ∈ CM×1 can be
expressed as

y = s⊗ h + e, (7)

where ⊗ is the convolution operation, s is the target scattering distribution, h is the antenna
pattern, and e is the discrete clutter and additive noise component after clutter cancellation.
This formula is equivalent to

y =



h1
h2 h1
... h2

. . .

hL
...

. . . h1
hL h2

. . .
...

hL


s + e, (8)

where s is the target scattering vector defined as s
4
= (s1, s2, . . . sK)

T , suppose that there are K

point targets, h
4
= (h1, h2, . . . hL)

T defines the antenna pattern vector, where (.)T represents
transposition, and L is the number of antenna pattern sampling points. Furthermore, the
steering vector matrix A can be defined as

A =



h1
h2 h1
... h2

. . .

hL
...

. . . h1
hL h2

. . .
...

hL


4
= (a1, a2, . . . aK), (9)

where hl 6= 0, l = 1, ..., L. The relationship among M, K, and L can be determined by

M = K + L− 1. (10)
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Figure 2. Signal model of the target azimuth echo for the scanning FOD millimeter-wave radar.

3. Detection Method
3.1. Interference Suppression and Super-Resolution Based on IAA

The iterative adaptive approach (IAA) is a non-parametric, weighted least squares-
based iterative adaptive spectrum estimation approach. It can provide high resolution and
low side-lobe levels in the case of a small number of snapshots, coherent sources, and low
SNR [35]. Due to these advantages, the IAA has been applied to scanning radar sensing
and demonstrated as outstanding, in terms of both resolution improvement and noise
suppression. In the IAA framework [36], Equation (8) can be solved by weighted least
squares (WLS) minimization. The WLS cost function is given by

[y− skak]
HQ−1(k)[y− skak], k = 1, 2, ..., K, (11)

where (.)H represents conjugate transpose, Q(k) is the interference (signals at angles other
than the angle of current interest k) covariance matrix

Q(k) = R̂− P̂kakaH
k . (12)

Define the covariance matrix of the echo R̂
4
= APAH and let P be a K × K diagonal

matrix, whose diagonal contains the power at each angle on the scanning grid. Then, P can
be expressed as

P̂k = |ŝk|2, k = 1, 2, ..., K. (13)

Minimizing the cost function (10) with respect to sk yields

ŝk =
aH

k Q(k)−1y

aH
k Q(k)−1ak

. (14)
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It can be seen, from the above formula, that a huge computational burden is required
to calculate the value of sk, as recalculating Q(k) is required in each step. Fortunately, by
the matrix inversion lemma, Q(k)−1 can be expressed as

Q(k)−1 = R̂−1 +
P̂kR̂−1akaH

k R̂−1

1− P̂kaH
k R̂−1ak

. (15)

Inserting (15) into (14), the iterative formula for WLS estimation can be obtained as:

ŝk =
aH

k R̂−1y
aH

k R̂−1ak
. (16)

The azimuth echo is constructed by convolution of the antenna pattern and the target
scattering coefficient, including the presence of noise. The signal recovery process is
transformed into the corresponding inversion process. As the iteration proceeds, the IAA
covariance matrix R̂ approaches a singular matrix and, so, its ill conditioning is inevitable.
By adding regular terms, introducing prior information of noise or clutter distribution,
and restoring the rank, the ill-conditioned problem can be handled. Some white noise is
artificially added to the main diagonal of the echo data covariance matrix; namely, adaptive
diagonal loading technology. This can ensure that the diagonal loading matrix is always
invertible, regardless of whether the covariance matrix is singular or not. The covariance
matrix of echo data can be expressed as

R̂ = AP̂AH + ξ̂ I, (17)

where ξ̂ is the diagonal loading factor and I is an identity matrix. According to the
regularized IAA algorithm [26], the optimized parameters can be calculated by the follow-
ing formula:

ξ̂ =
1
M

M

∑
m=1
| iH

m R̂−1y
iH
m R̂−1im

|2, (18)

where M is the length of echo data and im is the mth column of the identity matrix I.
The above-mentioned dispersive and residual interference mainly comes from the

side-lobe of strongly scattering targets or non-homogeneous clutter after clutter cancellation
processing. We use the adaptive iteration of the IAA algorithm to estimate the part of
the interference component during each iteration and eliminate its influence from the
measured data, thereby achieving interference suppression. The interference suppression
and super-resolution algorithm based on IAA is implemented in an iterative manner, as
described in Algorithm 1. Usually, the initialization is done by a standard delay-and-

sum beamformer [35] that is, Pk =
1

(aH
k ak)2

|aH
k y|2, k = 1, 2, ..., K. When the difference

between two adjacent estimated powers is calculated to be less than a certain threshold or
a prescribed number of iterations is reached, the estimate of ŝ is obtained.
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Algorithm 1 Interference suppression and super-resolution algorithm based on IAA

Initialization: Pk =
1

(aH
k ak)2

|aH
k y|2, k = 1, 2, ..., K

Repeat

R̂ = AP̂AH + ξ̂ I

for k = 1, 2, ..., K

ŝk =
aH

k R̂−1y
aH

k R̂−1ak

P̂k = |ŝk|2

ξ̂ =
1
M

M
∑

m=1
| iH

m R̂−1y
iH
m R̂−1im

|2

end for

until (convergence)

3.2. FOD Detection Method

Traditional FOD detection methods only use the background clutter to cancel the
clutter of the observed scene, which makes it impossible to completely eliminate the
clutter and interference reflections. The proposed method combines the clutter cancellation
together, while exploiting the sparsity of the observed scene and distribution characteristics
of interference. The dispersed interference reflections can be suppressed under the process
of IAA reconstruction.

Based on the existing FOD detection algorithm, we propose an FOD detection method
based on IAA signal reconstruction. The method is divided into three steps: data prepro-
cessing, refined data processing, and information fusion processing. Finally, accurate FOD
target information (coordinate information on the runway) can be obtained.

Specific descriptions of the steps are as follows:

Step 1: Data preprocessing. First, the estimation of clutter background intensity is obtained
by averaging the measured values of previous multiple scans of the runway scene
without targets. After iterative averaging, the clutter map storage value becomes
more and more stable, and the clutter change amplitude becomes smaller and
smaller, which can reduce the false alarm rate. The adaptive clutter map CFAR
technology is used to obtain the coarse FOD target information. This is the general
detection method of conventional FOD radar.

Step 2: Refined data processing. First, use standard instruments to acquire the radar
antenna pattern data by far field measurement method, which can be normalized
for subsequent processing. Then, according to the coarse FOD target information
obtained in Step 1, the original data of the same range bin corresponding to the
FOD target position will be reprocessed by IAA in the azimuth direction. Finally,
the CFAR detection processing is performed again.

Step 3: Information fusion processing.Through the processing of the above two steps, the
coarse FOD target information obtained by Step 1 and the second detection FOD
target information acquired by Step 2 are used to comprehensively distinguish false
alarms by fusion processing of multiple information, in order to obtain accurate
FOD target information.

The specific flow chart is shown in Figure 3. This article focuses on the IAA processing
part of Step 2.
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Figure 3. Flowchart of the FOD radar processing chain for the proposed method.

4. Experimental Scenarios

To validate the effectiveness of the method proposed in this paper, some experimental
results using FOD millimeter-wave radar data from the Aerospace Information Research,
Chinese Academy of Sciences (AIRCAS) are presented. We performed our experiment
using real Airport data. In the following, we introduce the radar sensor and test scenarios.

4.1. Radar Sensor

The test radar was a W-band linear frequency modulation continuous wave radar
with a repetition frequency of 1000 Hz. The radio-frequency (RF) signals with a bandwidth
of 2 GHz from 92 GHz to 94 GHz were downsampled into an intermediate-frequency (IF)
band and loaded via an AD converter with sampling frequency of 50 MHz. The radar was
mounted on a mechanical servo motor, in order to achieve azimuth scanning. A photo of
the radar is shown in Figure 4a.

Figure 4. Some details of FOD millimeter-wave radar: (a) radar appearance; and (b) measured antenna azimuth radiation
pattern at 93 GHz.
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The antenna adopted a pair of horizontally polarization-fed parabolic antennae and
scanned horizontally across an angular range of 360 degrees (according to this test scenario,
we set the scan angle range from −40 degrees to +70 degrees). The basic function of the
antenna is to complete signal transmission and reception. The transceiver antenna was
separated to improve the isolation. According to the performance requirements of the
system, an offset-fed parabolic antenna was used, with the transceiver antenna having
the same form. The main-lobe beamwidth of the antenna was 4 degrees in elevation and
0.6 degree in azimuth. The narrow azimuthal beamwidth and wide elevation beamwidth
make this antenna practical for FOD detection. Figure 4b shows the measured azimuth
radiation pattern of the antenna at 93 GHz. The working parameters of the FOD millimeter-
wave radar system are given in Table 1.

Table 1. Parameters of the FOD millimeter-wave radar system.

Parameter Value Units

Carrier frequency 93 GHz
Band width 2 GHz

Antenna scanning velocity 15 degrees/s
Azimuth main-lobe beamwidth 0.6 degree
Elevation main-lobe beamwidth 4 degrees

Antenna scanning area −40∼+70 degrees
Pulse repetition frequency 1000 Hz

4.2. Test Scenarios

We performed our experiment at Beijing Miyun Airport, located in the northeast of
the Beijing Miyun District. The new airport runway (asphalt material) and the crossed old
runway (concrete material) are both 800 m in length. Figure 5 shows a photo of the airport.

Figure 5. Photo of Beijing Miyun Airport.

The test radar was placed about 250 m from the center line of the new runway, with
the radar antenna about 9 m above the ground—after clearing the runway and manually
confirming that there were no FODs in the test scene. The original echo data of the entire
airport was acquired by scanning the airport. After range compression processing, the
center of the radar antenna was used as the co-ordinate origin. Then, a radar amplitude
image of the entire airport could be obtained, which can be used as the background clutter
for clutter cancellation processing, as shown in Figure 6.

In order to verify the interference suppression and super-resolution improvement of
FOD radar detection by the proposed IAA algorithm, we selected two test scenarios, the
locations of which are marked in Figure 6. Scene 1 was located on the old runway. Six golf
balls with a diameter of 43 mm were placed around the co-ordinates (100 m, 300 m) and
near the aircraft parked on the runway, three of which were in the same range bin. Scene 2
was located on the new runway, where seven metal balls with a diameter of 50 mm were
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placed around the co-ordinates (660 m, 250 m). Figure 7 shows the FOD targets used in
the experiment.

Figure 6. Radar amplitude image of Beijing Miyun Airport.

Figure 7. FOD targets used in the experiment.

5. Results and Discussion
5.1. Scene 1

Figure 8 shows the amplitude image of the test Scene 1 after clutter cancellation
processing. It can be seen that the strong echoes generated by airplane targets and grass
could not be completely eliminated by clutter cancellation processing, with its side-lobes
forming clutter interference resulting in false alarms, as shown in Figure 9. At the same
time, there were many discrete clutter residues around the targets, which led to unnecessary
false targets. Due to the poor azimuth resolution of the real aperture radar, it is obvious
that the three close targets could not be distinguished.

According to the FOD Detection Method described in Section 3, the original data of
the same range bin corresponding to the FOD target position were reprocessed by IAA in
the azimuth direction for the refined data processing step. We used the known antenna
reference pattern and azimuth echo data to reconstruct the signal based on IAA algorithm
in the target area. Through IAA processing, it can be seen that the clutter and interference
signals were suppressed, and signals overlapping in azimuth were also distinguished, as
can be seen in Figure 10. In order to reveal the effect more clearly, Figure 11 shows the
results of before and after the IAA processing of azimuth data in the same 14th and 37th
range bins. It can be clearly seen, from the figure, that a group of interferences located near
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the 50th azimuth sampling point was suppressed. This was the side-lobe interference from
the aircraft target. However, FOD 2 was retained and recovered, whose signal power was
the same as the interference. At the same time, the single discrete interferences located
near azimuth sampling point 371 were suppressed, as shown in Figure 11b, which were
considered residual interference after the clutter cancellation. In summary, while the false
alarms were eliminated, the clutter background was also simultaneously smoothed. The
azimuth resolution of the targets was improved. The super-resolution performance is
uniformly analyzed below.

Figure 8. FOD targets deployment in Scene 1.

Figure 9. Before IAA processing of the area of Scene 1.

After data processing based on IAA, CFAR detection processing was performed once
more. The same cell averaging (CA) CFAR was used, with five guard cells in range and
50 guard cells in azimuth. Receiver operating characteristic (ROC; detection rate versus
false alarm rate) analysis has been widely used as an evaluation tool for signal detection [37].
In order to evaluate the performance of the two methods, comparison of the ROC curves
of the traditional and proposed detection method is shown in Figure 12. When the same
false alarm probability parameter was set, the proposed method had higher detection
probability. In other words, it provided a much lower false alarm rate. Meanwhile, the
detection performance was more stable under different false alarm probabilities. In short,
the results show that the detection performance of the method proposed in this article was
significantly better than that of the traditional method.
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Figure 10. After IAA processing of the area of Scene 1.

Figure 11. Comparison of IAA processing results for the same range bin: (a) before and after IAA processing of azimuth
data on the 14th range bin of Scene 1; (b) before and after IAA processing of azimuth data on the 37th range bin of Scene 1.

Figure 12. Comparison of ROC curves of the traditional and proposed detection methods.
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5.2. Scene 2

Compared with the close range scene, the clutter was weaker in the long range test
scene. There were almost no false alarms, but, due to the poor azimuth resolution of the
radar, it could not be distinguished completely along the azimuth direction in Figure 13.
The azimuth resolution of the real aperture scanning radar is related to the azimuth beam
width of the antenna and the target distance; in particular, as the distance increases, the
resolution decreases.

Figure 13. FOD target deployment, Scene 2.

As the target was about 660 m away from the radar, the azimuth resolution was very
poor. As can be seen from Figure 14, the overall clutter and noise level were relatively high,
the SNR of the targets did not exceed 16 dB, and all targets were difficult to distinguish in
the azimuth direction, leading to serious azimuth ambiguity. The IAA processing showed
good azimuth super-resolution capability and suppression of the clutter background by
about 10 dB, as shown in Figure 15. For FOD 5∼7 targets, as the signal-to-noise ratio
was relatively higher, the reconstructed signal was smoother and the resolution effect was
better, compared with the other FOD targets. To study the performance of super-resolution
in this FOD detection method proposed, the super-resolution performance was evaluated
using the super-resolution ratio, which is defined as [38]:

κ =
∆θ

∆S
, (19)

where ∆θ is the main lobe width of the antenna pattern, which is equal to the azimuth
resolution of the real beam imaging. ∆S had 3 dB width for the IAA estimates for a
single FOD target. As determined through the calculation of each target in the scene, the
super-resolution ratio κ statistics are listed in Tables 2 and 3. The overall super-resolution
performance of the FOD targets in Scene 1 was better than that of the FOD targets in
Scene 2, where the FOD 4 target had the best super-resolution performance (of 3.1 times),
benefiting from its high SNR. In Scene 2, the SNR was generally low (even down to 8 dB);
however, a resolution performance of about 1.3 times was still obtained. These statistical
results confirm that the IAA algorithm can maintain better performance at a lower SNR
and, at the same time, as the SNR increases, the method’s performance increases [31,39].

Table 2. Super-resolution ratio statistics of the FOD targets in Scene 1.

Target FOD 1 FOD 2 FOD 3 FOD 4 FOD 5 FOD 6

SNR 16.2 10.1 12.2 18.3 13.8 12
κ 2.2 2.1 2.4 3.1 2.1 2.6
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Table 3. Super-resolution ratio statistics of the FOD targets in Scene 2.

Target FOD 1 FOD 2 FOD 3 FOD 4 FOD 5 FOD 6 FOD 7

SNR 9.8 8 10 8.2 12.3 15.2 14
κ 1.8 1.3 1.4 2 2.2 1.7 2.2

Figure 14. Test data obtained on azimuth direction, Scene 2.

Figure 15. Results after azimuth IAA processing, Scene 2.
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Based on the analysis above, we have reason to believe that the method proposed in
this paper not only possesses superior interference suppression capability, leading to false
alarm reduction, but also can provide super-resolution in the azimuth direction.

6. Conclusions

In this article, a novel interference suppression and false alarm reduction method for a
FOD millimeter-wave radar system was proposed, based on an iterative adaptive approach
algorithm. The geometric and signal models of the real aperture FOD scanning radar were
described. Next, the detection method based on IAA was derived in detail. Specifically,
we first obtain coarse FOD target information by data preprocessing in a conventional
detection method. Then, a refined data processing step is conducted based on the IAA
algorithm in the azimuth direction. Finally, multiple pieces of information from the two
steps above are used to comprehensively distinguish false alarms by fusion processing;
thus, we can acquire accurate FOD target information. Real airport data measured by a 93
GHz radar are used to validate the proposed method. Experimental results of the test scene,
which include golf balls with a diameter of 43 mm, were placed about 300 m away from
radar, which show that the proposed method can effectively reduce the number of false
alarms when compared with a traditional FOD detection method. Although metal balls
with a diameter of 50 mm were placed about 660 m away from radar, they also can obtain
up to 2.2 times azimuth super-resolution capability. Overall, the results demonstrated
that the proposed method can effectively reduce false alarms and achieve super-resolution
capability.

The IAA method has its limitations in some application scenarios, such as closely-
spaced four targets and so on. How to improve and optimize its performance is an impor-
tant work in the future. Recently, a new approach using Independent Component Analysis
(ICA) with the Joint Approximate Diagonalization of Eigenmatrices (JADE) algorithm
was used for separating closely-spaced subjects, such as respiratory signatures [40,41].
The research demonstrates that this approach can maintain accurate and efficient monitor
multiple subjects across a broad range of subject separation scenarios [41]. Blind source
separation (ICA-JADE) technology is a potential solution for a closely-spaced multiple
targets separation in FOD detection. It may encourage further development toward a
super-resolution FOD radar system.
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