# Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Setup Overview

#### 2.2. MNP Excitation Circuit

#### 2.3. MNP

#### 2.4. OPM: Optical Magnetic Gradiometer (OMG)

^{87}Rb). After pumping, the atoms freely precess and their projection is monitored by optical rotation of a linearly polarized probe beam light. The off-resonance $100\mathsf{\mu}\mathrm{W}$ probe beam light is generated by a single mode, polarization stable vertical-cavity surface-emitting laser (VCSEL). Both, the pump and probe laser are tuned near the 795 $\mathrm{n}$$\mathrm{m}$ rubidium resonance manually. The rubidium polarization relaxation rate is dominated by spin-exchange relaxation. With the pump beam shut off for the duration of the measurement a class of systematic errors from pump lightshift to pointing noise are completely eliminated, resulting in a very clean and high precision frequency-based magnetic field measurement. The high power optical pumping substantially resets and erases the time history of the alkali polarization, rendering an independent magnetic field measurement each $\mathrm{m}\mathrm{s}$. It should be noted that there is no frequency feedback or resonance tracking as used in other types of self-oscillating magnetometers. This also enhances OPM bandwidth. The different elements of the commercially available sensor are sketched in Figure 3. The sensor is composed of two magnetometers; i.e., it houses two vapor cells. The pump beam and probe beam are split and distributed to the two cells, enabling a future common laser noise reduction as in [49]. The two amplified photodiode signals are available as analog outputs of the OPM control electronics. Additionally, the signals are filtered with a passband between 100 and $500\mathrm{kHz}$ and are fed into an FPGA inside the OMG control electronics, which measures the frequency and sends the result via USB connection.

#### 2.5. Data Acquisition, System Synchronization and Mains Synchronization

#### 2.6. Data Processing: Raw Photodiode Data

^{87}Rb ($\gamma /2\pi =7\mathrm{Hz}/\mathrm{n}\mathrm{T}$). Iterating over each data chunk gives magnetic field readings at a sample rate of $1\mathrm{kHz}$.

#### 2.7. Data Processing: FPGA Data

#### 2.8. Data Processing: MRX Data

#### 2.9. Proof of Principle Unshielded OPM-MRX with 100 mT Pulsed Fields

## 3. Results and Discussion

#### 3.1. OMG Characterization and Performance

^{87}Rb and corresponds to the Earth’s magnetic field of $43.6\mathsf{\mu}\mathrm{T}$. The harmonic at $610\mathrm{kHz}$ may arise due to orientation-to-alignment conversion due to the linearly polarized probe laser or due to a background magnetic field with a vector component parallel to the pump beam [56,57].

#### 3.2. Unshielded MRX with OMG

#### 3.3. Proof of Principle Unshielded OPM-MRX with 100 mT Pulsed Fields

## 4. Conclusions and Outlook

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys.
**2003**, 36, R167–R181. [Google Scholar] [CrossRef] [Green Version] - Richter, H.; Kettering, M.; Wiekhorst, F.; Steinhoff, U.; Hilger, I.; Trahms, L. Magnetorelaxometry for localization and quantification of magnetic nanoparticles for thermal ablation studies. Phys. Med. Biol.
**2010**, 55, 623. [Google Scholar] [CrossRef] - Usov, N.; Liubimov, B. Dynamics of magnetic nanoparticle in a viscous liquid: Application to magnetic nanoparticle hyperthermia. J. Appl. Phys.
**2012**, 112, 023901. [Google Scholar] [CrossRef] - Wiekhorst, F.; Steinhoff, U.; Eberbeck, D.; Trahms, L. Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles. Pharm. Res.
**2011**, 29, 1189–1202. [Google Scholar] [CrossRef] [Green Version] - Liebl, M.; Wiekhorst, F.; Eberbeck, D.; Radon, P.; Gutkelch, D.; Baumgarten, D.; Steinhoff, U.; Trahms, L. Magnetorelaxometry procedures for quantitative imaging and characterization of magnetic nanoparticles in biomedical applications. Biomed. Eng. Tech.
**2015**, 60, 427–443. [Google Scholar] [CrossRef] [PubMed] - Néel, L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Géophys.
**1949**, 5, 99–136. [Google Scholar] - Brown, W.F., Jr. Thermal fluctuations of a single-domain particle. Phys. Rev.
**1963**, 130, 1677. [Google Scholar] [CrossRef] - Raikher, Y.L.; Shliomis, M.I. The effective field method in the orientational kinetics of magnetic fluids and liquid crystals. Adv. Chem. Phys.
**1994**, 87, 595–752. [Google Scholar] - Chantrell, R.; Hoon, S.; Tanner, B. Time-dependent magnetization in fine-particle ferromagnetic systems. J. Magn. Magn. Mater.
**1983**, 38, 133–141. [Google Scholar] [CrossRef] - Eberbeck, D.; Wiekhorst, F.; Steinhoff, U.; Trahms, L. Aggregation behaviour of magnetic nanoparticle suspensions investigated by magnetorelaxometry. J. Phys. Condens. Matter
**2006**, 18, S2829. [Google Scholar] [CrossRef] - Ludwig, F.; Heim, E.; Eberbeck, D.; Schwarz, K.; Trahms, L.; Schilling, M. Comparison and Calibration of Fluxgate and SQUID Magnetorelaxometry Techniques for the Characterization of Magnetic Core-Shell Nanoparticles. IEEE Trans. Magn.
**2009**, 45, 4857–4860. [Google Scholar] [CrossRef] - Denoual, M.; Saez, S.; Kauffman, F.; Dolabdjian, C. Magnetorelaxometry using Improved Giant MagnetoResistance Magnetometer. Sens. Actuators A Phys.
**2010**, 159, 184–188. [Google Scholar] [CrossRef] [Green Version] - Zhou, X.; Huang, C.C.; Hall, D.A. Giant magnetoresistive biosensor array for detecting magnetorelaxation. IEEE Trans. Biomed. Circuits Syst.
**2017**, 11, 755–764. [Google Scholar] [CrossRef] [PubMed] - Ludwig, F.; Heim, E.; Mäuselein, S.; Eberbeck, D.; Schilling, M. Magnetorelaxometry of magnetic nanoparticles with fluxgate magnetometers for the analysis of biological targets. J. Magn. Magn. Mater.
**2005**, 293, 690–695. [Google Scholar] [CrossRef] - Shen, H.M.; Hu, L.; Fu, X. Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections. Sensors
**2018**, 18, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Liu, P.; Skucha, K.; Megens, M.; Boser, B. A CMOS Hall-effect sensor for the characterization and detection of magnetic nanoparticles for biomedical applications. IEEE Trans. Magn.
**2011**, 47, 3449–3451. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Schmid-Lorch, D.; Häberle, T.; Reinhard, F.; Zappe, A.; Slota, M.; Bogani, L.; Finkler, A.; Wrachtrup, J. Relaxometry and dephasing imaging of superparamagnetic magnetite nanoparticles using a single qubit. Nano Lett.
**2015**, 15, 4942–4947. [Google Scholar] [CrossRef] [Green Version] - Kuwahata, A.; Kitaizumi, T.; Saichi, K.; Sato, T.; Igarashi, R.; Ohshima, T.; Masuyama, Y.; Iwasaki, T.; Hatano, M.; Jelezko, F.; et al. Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications. Sci. Rep.
**2020**, 10, 1–9. [Google Scholar] [CrossRef] [Green Version] - Dehmelt, H. Modulation of a light beam by precessing absorbing atoms. Phys. Rev.
**1957**, 105, 1924. [Google Scholar] [CrossRef] - Bell, W.E.; Bloom, A.L. Optical detection of magnetic resonance in alkali metal vapor. Phys. Rev.
**1957**, 107, 1559. [Google Scholar] [CrossRef] - Dupont-Roc, J.; Haroche, S.; Cohen-Tannoudji, C. Detection of very weak magnetic fields (10
^{−9}gauss) by^{87}Rb zero-field level crossing resonances. Phys. Lett. A**1969**, 28, 638–639. [Google Scholar] [CrossRef] - Happer, W.; Tang, H. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors. Phys. Rev. Lett.
**1973**, 31, 273. [Google Scholar] [CrossRef] - Kominis, I.; Kornack, T.; Allred, J.; Romalis, M. A subfemtotesla multichannel atomic magnetometer. Nature
**2003**, 422, 596–599. [Google Scholar] [CrossRef] - Allred, J.C.; Lyman, R.N.; Kornack, T.W.; Romalis, M.V. High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation. Phys. Rev. Lett.
**2002**, 89, 130801. [Google Scholar] [CrossRef] [Green Version] - Johnson, C.; Adolphi, N.L.; Butler, K.L.; Lovato, D.M.; Larson, R.; Schwindt, P.D.; Flynn, E.R. Magnetic relaxometry with an atomic magnetometer and SQUID sensors on targeted cancer cells. J. Magn. Magn. Mater.
**2012**, 324, 2613–2619. [Google Scholar] [CrossRef] [Green Version] - Dolgovskiy, V.; Lebedev, V.; Colombo, S.; Weis, A.; Michen, B.; Ackermann-Hirschi, L.; Petri-Fink, A. A quantitative study of particle size effects in the magnetorelaxometry of magnetic nanoparticles using atomic magnetometry. J. Magn. Magn. Mater.
**2015**, 379, 137–150. [Google Scholar] [CrossRef] [Green Version] - Jaufenthaler, A.; Schier, P.; Middelmann, T.; Liebl, M.; Wiekhorst, F.; Baumgarten, D. Quantitative 2D magnetorelaxometry imaging of magnetic nanoparticles using optically pumped magnetometers. Sensors
**2020**, 20, 753. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Baffa, O.; Matsuda, R.; Arsalani, S.; Prospero, A.; Miranda, J.; Wakai, R. Development of an Optical Pumped Gradiometric System to Detect Magnetic Relaxation of Magnetic Nanoparticles. J. Magn. Magn. Mater.
**2018**, 475, 533–538. [Google Scholar] [CrossRef] - Belfi, J.; Bevilacqua, G.; Biancalana, V.; Cartaleva, S.; Dancheva, Y.; Khanbekyan, K.; Moi, L. Dual channel self-oscillating optical magnetometer. JOSA B
**2009**, 26, 910–916. [Google Scholar] [CrossRef] - Gemmel, C.; Heil, W.; Karpuk, S.; Lenz, K.; Ludwig, C.; Sobolev, Y.; Tullney, K.; Burghoff, M.; Kilian, W.; Knappe-Grüneberg, S.; et al. Ultra-sensitive magnetometry based on free precession of nuclear spins. Eur. Phys. J. D
**2010**, 57, 303–320. [Google Scholar] [CrossRef] [Green Version] - Lenci, L.; Barreiro, S.; Valente, P.; Failache, H.; Lezama, A. A magnetometer suitable for measurement of the Earth’s field based on transient atomic response. J. Phys. B At. Mol. Opt. Phys.
**2012**, 45, 215401. [Google Scholar] [CrossRef] [Green Version] - Grujić, Z.D.; Koss, P.A.; Bison, G.; Weis, A. A sensitive and accurate atomic magnetometer based on free spin precession. Eur. Phys. J. D
**2015**, 69, 135. [Google Scholar] [CrossRef] - Hunter, D.; Piccolomo, S.; Pritchard, J.; Brockie, N.; Dyer, T.; Riis, E. Free-induction-decay magnetometer based on a microfabricated Cs vapor cell. Phys. Rev. Appl.
**2018**, 10, 014002. [Google Scholar] [CrossRef] [Green Version] - Borna, A.; Carter, T.R.; DeRego, P.; James, C.D.; Schwindt, P.D. Magnetic source imaging using a pulsed optically pumped magnetometer array. IEEE Trans. Instrum. Meas.
**2018**, 68, 493–501. [Google Scholar] [CrossRef] - Gerginov, V.; Pomponio, M.; Knappe, S. Scalar Magnetometry Below 100 fT/Hz 1/2 in a Microfabricated Cell. IEEE Sens. J.
**2020**, 20, 12684–12690. [Google Scholar] [CrossRef] - Wilson, N.; Perrella, C.; Anderson, R.; Luiten, A.; Light, P. Wide-bandwidth atomic magnetometry via instantaneous-phase retrieval. Phys. Rev. Res.
**2020**, 2, 013213. [Google Scholar] [CrossRef] [Green Version] - Li, S.; Vachaspati, P.; Sheng, D.; Dural, N.; Romalis, M.V. Optical rotation in excess of 100 rad generated by Rb vapor in a multipass cell. Phys. Rev. A
**2011**, 84, 061403. [Google Scholar] [CrossRef] [Green Version] - Haller, A.; Matz, H.; Hartwig, S.; Kerberger, T.; Atzpadin, H.; Trahms, L. Low Tc SQUID measurement system for magnetic relaxation immunoassays in unshielded environment. IEEE Trans. Appl. Supercond.
**2001**, 11, 1371–1374. [Google Scholar] [CrossRef] - Ludwig, F.; Mäuselein, S.; Heim, E.; Schilling, M. Magnetorelaxometry of magnetic nanoparticles in magnetically unshielded environment utilizing a differential fluxgate arrangement. Rev. Sci. Instrum.
**2005**, 76, 106102. [Google Scholar] [CrossRef] - Lebedev, V.; Hartwig, S.; Middelmann, T. Fast and robust optically pumped cesium magnetometer. Adv. Opt. Technol.
**2020**, 9, 275–286. [Google Scholar] [CrossRef] - Oelsner, G.; IJsselsteijn, R.; Scholtes, T.; Krüger, A.; Schultze, V.; Seyffert, G.; Werner, G.; Jäger, M.; Chwala, A.; Stolz, R. Integrated optically pumped magnetometer for measurements within Earth’s magnetic field. arXiv
**2020**, arXiv:2008.01570. [Google Scholar] - Zhang, R.; Mhaskar, R.; Smith, K.; Prouty, M. Portable intrinsic gradiometer for ultra-sensitive detection of magnetic gradient in unshielded environment. Appl. Phys. Lett.
**2020**, 116, 143501. [Google Scholar] [CrossRef] [Green Version] - Limes, M.; Foley, E.; Kornack, T.; Caliga, S.; McBride, S.; Braun, A.; Lee, W.; Lucivero, V.; Romalis, M. Portable magnetometry for detection of biomagnetism in ambient environments. Phys. Rev. Appl.
**2020**, 14, 011002. [Google Scholar] [CrossRef] - Dedman, C.; Baldwin, K.; Colla, M. Fast switching of magnetic fields in a magneto-optic trap. Rev. Sci. Instrum.
**2001**, 72, 4055–4058. [Google Scholar] [CrossRef] - Crevecoeur, G.; Baumgarten, D.; Steinhoff, U.; Haueisen, J.; Trahms, L.; Dupré, L. Advancements in magnetic nanoparticle reconstruction using sequential activation of excitation coil arrays using magnetorelaxometry. IEEE Trans. Magn.
**2012**, 48, 1313–1316. [Google Scholar] [CrossRef] - Dennis, C.; Jackson, A.; Borchers, J.; Hoopes, P.; Strawbridge, R.; Foreman, A.; Van Lierop, J.; Grüttner, C.; Ivkov, R. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology
**2009**, 20, 395103. [Google Scholar] [CrossRef] [Green Version] - Attaluri, A.; Kandala, S.K.; Wabler, M.; Zhou, H.; Cornejo, C.; Armour, M.; Hedayati, M.; Zhang, Y.; DeWeese, T.L.; Herman, C.; et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. Int. J. Hyperth.
**2015**, 31, 359–374. [Google Scholar] [CrossRef] [Green Version] - Eberbeck, D.; Dennis, C.; Huls, N.; Krycka, K.; Grüttner, C.; Westphal, F. Multicore Magnetic Nanoparticles for Magnetic Particle Imaging. Magn. IEEE Trans.
**2013**, 49, 269–274. [Google Scholar] [CrossRef] - Schultze, V.; IJsselsteijn, R.; Meyer, H.G. Noise reduction in optically pumped magnetometer assemblies. Appl. Phys. B
**2010**, 100, 717–724. [Google Scholar] [CrossRef] - Borkowski, J.; Kania, D.; Mroczka, J. Comparison of sine-wave frequency estimation methods in respect of speed and accuracy for a few observed cycles distorted by noise and harmonics. Metrol. Meas. Syst.
**2018**, 25. [Google Scholar] - Harcombe, D.M.; Ruppert, M.G.; Fleming, A.J. A review of demodulation techniques for multifrequency atomic force microscopy. Beilstein J. Nanotechnol.
**2020**, 11, 76–91. [Google Scholar] [CrossRef] - Liu, J.L.; Zheng, J.Y.; Wei, X.J.; Liao, F.Y.; Luo, Y.P. A new instantaneous frequency extraction method for nonstationary response signals in civil engineering structures. J. Low Freq. Noise Vib. Act. Control
**2018**, 37, 834–848. [Google Scholar] [CrossRef] - Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Rao, C.R. Information and the accuracy attainable in the estimation of statistical parameters. In Breakthroughs in Statistics; Springer: Berlin, Germany, 1992; pp. 235–247. [Google Scholar]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis; Springer: Berlin, Germany, 1978; pp. 105–116. [Google Scholar]
- Rochester, S.; Ledbetter, M.; Zigdon, T.; Wilson-Gordon, A.; Budker, D. Orientation-to-alignment conversion and spin squeezing. Phys. Rev. A
**2012**, 85, 022125. [Google Scholar] [CrossRef] [Green Version] - Lenci, L.; Auyuanet, A.; Barreiro, S.; Valente, P.; Lezama, A.; Failache, H. Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor. Phys. Rev. A
**2014**, 89, 043836. [Google Scholar] [CrossRef] [Green Version] - Vershovskii, A.; Pazgalev, A.; Petrenko, M. All-Optical Magnetometric Sensor for Magnetoencephalography and Ultralow Field Tomography. Tech. Phys. Lett.
**2020**, 46, 877–880. [Google Scholar] [CrossRef] - Li, R.; Baynes, F.N.; Luiten, A.N.; Perrella, C. Continuous High-Sensitivity and High-Bandwidth Atomic Magnetometer. Phys. Rev. Appl.
**2020**, 14, 064067. [Google Scholar] [CrossRef] - Baumgarten, D.; Liehr, M.; Wiekhorst, F.; Steinhoff, U.; Münster, P.; Miethe, P.; Trahms, L.; Haueisen, J. Magnetic nanoparticle imaging by means of minimum norm estimates from remanence measurements. Med. Biol. Eng. Comput.
**2008**, 46, 1177. [Google Scholar] [CrossRef] - Remmer, H.; Dieckhoff, J.; Schilling, M.; Ludwig, F. Suitability of magnetic single-and multi-core nanoparticles to detect protein binding with dynamic magnetic measurement techniques. J. Magn. Magn. Mater.
**2015**, 380, 236–240. [Google Scholar] [CrossRef] - Sarangi, S.; Tan, I.; Brazdeikis, A. Brownian relaxation of interacting magnetic nanoparticles in a colloid subjected to a pulsatile magnetic field. J. Nanosci. Nanotechnol.
**2011**, 11, 4136–4141. [Google Scholar] [CrossRef] - Bao, G.; Schild, D. Fast and accurate fitting and filtering of noisy exponentials in Legendre space. PLoS ONE
**2014**, 9, e90500. [Google Scholar] [CrossRef] - Rusakov, V.; Raikher, Y. Magnetorelaxometry in the Presence of a DC Bias Field of Ferromagnetic Nanoparticles Bearing a Viscoelastic Corona. Sensors
**2018**, 18, 1661. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Jaufenthaler, A.; Schultze, V.; Scholtes, T.; Schmidt, C.B.; Handler, M.; Stolz, R.; Baumgarten, D. OPM magnetorelaxometry in the presence of a DC bias field. EPJ Quantum Technol.
**2020**, 7, 1–14. [Google Scholar] [CrossRef]

**Figure 3.**Schematic drawing of the pulsed optically pumped magnetometers (OPM), consisting of two pulsed magnetometers enclosed in a compact sensor head.

**Figure 4.**Summary of the raw photodiode processing techniques used: (

**a**) free-precession decay fit ($1\mathrm{kHz}$ sample rate); (

**b**) Hilbert transform; (

**c**) sliding window cosine fit.

**Figure 5.**Unshielded OPM-MRX setup with possible MRX excitation fields of up to 100 mT. The battery powered notebook, the USB-oscilloscope and the OMG control electronics are visible on the upper part of the figure. The OMG’s sensor head and the MRX excitation-coil are visible in the lower part of the figure. The position where the MNP sample was later placed is indicated by an arrow. The power amplifier is not visible, as it is located at a distance of about 3 m.

**Figure 6.**(

**a**) Unshielded raw OMG photodiode signal as output by the OPM electronics and recorded using an oscilloscope. (

**b**) Amplitude noise spectral densities (ANSD) of the raw OMG analog output: blue—normal operation; red—pump laser always off; black—OMG unpowered. The data used for the calculation of the ANSD were recorded $100\mathsf{\mu}\mathrm{s}$ to $700\mathsf{\mu}\mathrm{s}$ after the pump pulse.

**Figure 7.**Amplitude noise spectral density (ANSD) of the unshielded OPM in a laboratory environment. The OMG was configured to pump for $22\mathsf{\mu}\mathrm{s}$. The software gradiometer baseline is $2.3\mathrm{c}\mathrm{m}$.

**Figure 8.**Unshielded magnetometer noise spectral densities using free-precession decay fits (brown), sliding window fits (green) and Hilbert transform (red). Unshielded gradiometer noise spectral densities using free-precession decay fits (green), sliding window fits (blue), Hilbert transform (black) and linear fit to the Hilbert transform (purple).

**Figure 9.**Magnetometer amplitude response over OMG bandwidth for both magnetometer channels using Hilbert transform.

**Figure 10.**Coil current and OPM photodiode output. The optical pumping started $28\mathsf{\mu}\mathrm{s}$ after initiating the coil shut-off. The signal distortion prior the pump pulses (i.e., periods $-0.2\mathrm{m}\mathrm{s}$ to $0\mathrm{m}\mathrm{s}$ and $0.8\mathrm{m}\mathrm{s}$ to $1\mathrm{m}\mathrm{s}$) is caused by the electrical heater of the OMG.

**Figure 11.**Unshielded OPM-MRX measurements of BNF-MNP (sample with dilution factor 1:20). The excitation coil is on when no FPGA data are available, e.g., in the time span from $20\mathrm{m}\mathrm{s}$ to $30\mathrm{m}\mathrm{s}$. The FPGA data were not averaged.

**Figure 12.**Unshielded OPM-MRX measurements of a BNF-MNP dilution series. The excitation coil was switched off a few $\mathsf{\mu}\mathrm{s}$ before the timestamp $0\mathrm{s}$. The gradiometric data were averaged 100-times and an averaged empty measurement was subtracted. Individual FPGA-data-points are indicated by crosses, solid lines are the corresponding exponential fits (compare Table 1). (

**a**) FPGA data. (

**b**) FPGA data and instantaneous magnetic field obtained via Hilbert transform of 1:20 BNF sample; top: logarithmical time axis, bottom: linear time-axis.

**Figure 13.**(

**a**) FPGA-data of MRX of MNP embedded in gypsum at different excitation fields of up to $100\mathrm{m}\mathrm{T}$. The inset shows a zoom of the first $30\mathrm{m}\mathrm{s}$ of the relaxations. Please note the different time scale of the figure and inset. The data were not averaged. (

**b**) Pickup loop voltage during the shut-off of the different excitation fields.

**Table 1.**Estimated relaxation amplitudes $\Delta B$, relaxation times ${t}_{1/e}$ and fit parameters for double exponential fits (Equation (9)) to relaxation curves of liquid BNF MNP and Perimag${}^{\circledR}$ MNP. The values are extracted from FPGA data and from magnetic field readings obtained via Hilbert transform (HT).

Data | MNP | Dilution | Fe | $\mathsf{\Delta}\mathit{B}$ | ${\mathit{t}}_{1/\mathit{e}}$ | ${\mathit{B}}_{1}$ | ${\mathit{\tau}}_{1}$ | ${\mathit{B}}_{2}$ | ${\mathit{\tau}}_{2}$ | O | R${}_{\mathbf{adj}}^{2}$ |
---|---|---|---|---|---|---|---|---|---|---|---|

from | Type | Factor | ($\mathsf{\mu}\mathbf{g}$) | ($\mathbf{n}\mathbf{T}/\mathbf{c}\mathbf{m}$) | ($\mathbf{m}\mathbf{s}$) | ($\mathbf{n}\mathbf{T}/\mathbf{c}\mathbf{m}$) | ($\mathbf{m}\mathbf{s}$) | $(\mathbf{n}\mathbf{T}/\mathbf{c}\mathbf{m}$) | ($\mathbf{m}\mathbf{s}$) | ($\mathbf{n}\mathbf{T}/\mathbf{c}\mathbf{m}$) | |

FPGA | BNF | 1:1 | 1370 | 321.23 | 1.35 | 72.57 | 5.20 | 389.62 | 1.10 | 26.98 | 1.00 |

FPGA | BNF | 1:2 | 685 | 189.21 | 0.84 | 45.51 | 3.51 | 290.86 | 0.70 | 10.71 | 1.00 |

FPGA | BNF | 1:10 | 137 | 44.89 | 0.64 | 9.58 | 3.25 | 84.19 | 0.56 | 2.30 | 1.00 |

FPGA | BNF | 1:20 | 68.5 | 14.44 | 0.62 | 3.19 | 3.05 | 27.90 | 0.54 | 1.23 | 1.00 |

FPGA | BNF | 1:100 | 13.7 | 2.73 | 0.64 | 0.74 | 3.09 | 4.98 | 0.54 | 0.30 | 1.00 |

FPGA | BNF | 1:200 | 6.85 | 1.40 | 0.72 | 0.23 | 4.39 | 2.48 | 0.64 | 0.12 | 1.00 |

FPGA | BNF | 1:1000 | 1.37 | 0.28 | 0.75 | 0.05 | 8.62 | 0.49 | 0.65 | 0.01 | 1.00 |

HT | BNF | 1:1 | 1370 | 265.18 | 0.18 | 298.19 | 1.94 | 1214.60 | 0.13 | 33.42 | 0.99 |

HT | BNF | 1:2 | 685 | 164.52 | 0.35 | 120.89 | 1.86 | 457.98 | 0.25 | 12.00 | 1.00 |

HT | BNF | 1:10 | 137 | 39.68 | 0.42 | 21.98 | 1.81 | 95.46 | 0.32 | 2.64 | 1.00 |

HT | BNF | 1:20 | 68.5 | 12.77 | 0.42 | 7.00 | 1.78 | 31.17 | 0.32 | 1.41 | 0.99 |

HT | BNF | 1:100 | 13.7 | 2.43 | 0.42 | 1.52 | 1.76 | 5.68 | 0.31 | 0.28 | 0.61 |

HT | BNF | 1:200 | 6.85 | 1.25 | 0.42 | 0.65 | 1.92 | 3.05 | 0.33 | 0.10 | 0.31 |

FPGA | Perimag${}^{\circledR}$ | 1:1 | 850 | 132.99 | 1.43 | 66.40 | 4.88 | 128.91 | 0.81 | 30.72 | 1.00 |

FPGA | Perimag${}^{\circledR}$ | 1:10 | 85 | 16.07 | 1.08 | 6.86 | 4.74 | 19.18 | 0.70 | 3.28 | 1.00 |

HT | Perimag${}^{\circledR}$ | 1:1 | 850 | 124.23 | 0.73 | 54.94 | 4.97 | 191.99 | 0.49 | 30.78 | 1.00 |

HT | Perimag${}^{\circledR}$ | 1:10 | 85 | 14.96 | 0.69 | 9.06 | 3.56 | 22.24 | 0.40 | 3.44 | 0.99 |

**Table 2.**Estimated relaxation parameters $\Delta B$, ${t}_{1/e}$ and offset O of relaxation curves with excitation fields ranging from $1\mathrm{m}\mathrm{T}$ to $100\mathrm{m}\mathrm{T}$. The sample consists of gypsum-immobilized MNP with a total iron amount of $6.4\mathrm{m}\mathrm{g}$.

${\mathit{B}}_{\mathbf{excitation}}$ | $\mathsf{\Delta}\mathit{B}$ | ${\mathit{t}}_{1/\mathit{e}}$ | O |
---|---|---|---|

($\mathbf{m}\mathbf{T}$) | ($\mathbf{n}\mathbf{T}/\mathbf{c}\mathbf{m}$) | ($\mathbf{m}\mathbf{s}$) | $(\mathbf{n}\mathbf{T}/\mathbf{c}\mathbf{m}$) |

100 | 120.98 | 6 | −50.01 |

40 | 69.98 | 48 | −50.09 |

20 | 92.34 | 16 | −50.14 |

10 | 68.30 | 58 | −50.07 |

2 | 43.66 | 58 | −51.24 |

1 | 28.65 | 40 | −51.94 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jaufenthaler, A.; Kornack, T.; Lebedev, V.; Limes, M.E.; Körber, R.; Liebl, M.; Baumgarten, D.
Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles. *Sensors* **2021**, *21*, 1212.
https://doi.org/10.3390/s21041212

**AMA Style**

Jaufenthaler A, Kornack T, Lebedev V, Limes ME, Körber R, Liebl M, Baumgarten D.
Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles. *Sensors*. 2021; 21(4):1212.
https://doi.org/10.3390/s21041212

**Chicago/Turabian Style**

Jaufenthaler, Aaron, Thomas Kornack, Victor Lebedev, Mark E. Limes, Rainer Körber, Maik Liebl, and Daniel Baumgarten.
2021. "Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles" *Sensors* 21, no. 4: 1212.
https://doi.org/10.3390/s21041212