Deep-Subwavelength-Optimized Holey-Structured Metamaterial Lens for Nonlinear Air-Coupled Ultrasonic Imaging
Abstract
:1. Introduction
2. Theoretical Background
2.1. Air-Coupled Ultrasound
2.2. The Fabry–Perot Resonance Modes—Principle of Metamaterial Lenses
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moustafa, A.; Niri, E.D.; Farhidzadeh, A.; Salamone, S. Corrosion monitoring of post-tensioned concrete structures using fractal analysis of guided ultrasonic waves. Struct. Control Health Monit. 2014, 21, 438–448. [Google Scholar] [CrossRef]
- Ciampa, F.; Meo, M. Impact detection in anisotropic materials using a time reversal approach. Struct. Health Monit. 2012, 11, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Ciampa, F.; Boccardi, S.; Meo, M. Factors affecting the imaging of the impact location with inverse filtering and diffuse wave fields. J. Intell. Mater. Syst. Struct. 2016, 27, 1523–1533. [Google Scholar] [CrossRef] [Green Version]
- Meo, M.; Polimeno, U.; Zumpano, G. Detecting damage in composite material using nonlinear elastic wave spectroscopy methods. Appl. Compos. Mater. 2008, 15, 115–126. [Google Scholar] [CrossRef]
- Taheri, H. Utilization of Non-destructive Testing (NDT) Methods for Composite Materials Inspection (Phased Array Ultrasonic). Ph.D. Thesis, South Dakota State University, Brookings, SD, USA, 2014. [Google Scholar]
- Schnars, U.; Henrich, R. Applications of NDT methods on composite structures in aerospace industry. In Proceedings of the Conference on Damage in Composite Materials, Stuttgart, Germany, 18–19 September 2006; pp. 1–8. [Google Scholar]
- Habermehl, J.; Lamarre, A.; Roach, D. Ultrasonic phased array tools for composite inspection during maintenance and manufacturing. In Proceedings of the 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008; pp. 25–28. [Google Scholar]
- Cardoso, J.-F. 3-D Ultrasonic speckle modeling: Below the Rayleigh limit. In Pattern Recognition and Acoustical Imaging; International Society for Optics and Photonics: Bellingham, WA, USA, 1987; Volume 768, pp. 207–215. [Google Scholar]
- Neubauer, W.G. Ultrasonic reflection of a bounded beam at Rayleigh and critical angles for a plane liquid-solid interface. J. Appl. Phys. 1973, 44, 48–55. [Google Scholar] [CrossRef]
- Gan, T.; Hutchins, D.; Billson, D.; Schindel, D. The use of broadband acoustic transducers and pulse-compression techniques for air-coupled ultrasonic imaging. Ultrasonics 2001, 39, 181–194. [Google Scholar] [CrossRef]
- Hillger, W.; Ilse, D.; Bühling, L. Practical applications of air-coupled ultrasonic technique. In Proceedings of the Conference 4th International Symposium on NDT in Aerospace, Augsburg, Germany, 13–14 November 2012; pp. 13–15. [Google Scholar]
- Wright, W.; Hutchins, D. Air-coupled ultrasonic testing of metals using broadband pulses in through-transmission. Ultrasonics 1999, 37, 19–22. [Google Scholar] [CrossRef]
- Stoessel, R.; Krohn, N.; Pfleiderer, K.; Busse, G. Air-coupled ultrasound inspection of various materials. Ultrasonics 2002, 40, 159–163. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Gómez, T.E.; Montero, F. Bridging the gap of impedance mismatch between air and solid materials. In Proceedings of the 2000 IEEE Ultrasonics Symposium. An International Symposium, San Juan, Puerto Rico, 22–25 October 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 2, pp. 1069–1072. [Google Scholar]
- Álvarez-Arenas, T.G. Acoustic impedance matching of piezoelectric transducers to the air. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 624–633. [Google Scholar] [CrossRef]
- Grandia, W.; Fortunko, C. NDE applications of air-coupled ultrasonic transducers. In Proceedings of the 1995 IEEE Ultrasonics Symposium. An International Symposium, Seattle, WA, USA, 7–10 November 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 1, pp. 697–709. [Google Scholar]
- Ding, Z.; Payne, P. A new Golay code system for ultrasonic pulse echo measurements. Meas. Sci. Technol. 1990, 1, 158. [Google Scholar] [CrossRef]
- Zahorik, P. Limitations in using Golay codes for head-related transfer function measurement. J. Acoust. Soc. Am. 2000, 107, 1793–1796. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, M.; Yañez, Y.; Garcia-Hernandez, M.; Salazar, J.; Turó, A.; Chavez, J. Application of Golay codes to improve the dynamic range in ultrasonic Lamb waves air-coupled systems. NDT E Int. 2010, 43, 677–686. [Google Scholar] [CrossRef]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966. [Google Scholar] [CrossRef]
- Guenneau, S.; Movchan, A.; Pétursson, G.; Ramakrishna, S.A. Acoustic metamaterials for sound focusing and confinement. New J. Phys. 2007, 9, 399. [Google Scholar] [CrossRef]
- Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X. Ultrasonic metamaterials with negative modulus. Nat. Mater. 2006, 5, 452. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Park, C.M.; Seo, Y.M.; Wang, Z.G.; Kim, C.K. Acoustic metamaterial with negative density. Phys. Lett. A 2009, 373, 4464–4469. [Google Scholar] [CrossRef]
- Huang, H.; Sun, C. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New J. Phys. 2009, 11, 013003. [Google Scholar] [CrossRef]
- Russell, P.S.J.; Marin, E.; Diez, A.; Guenneau, S.; Movchan, A.B. Sonic band gaps in PCF preforms: Enhancing the interaction of sound and light. Opt. Express 2003, 11, 2555–2560. [Google Scholar] [CrossRef] [PubMed]
- Amireddy, K.K.; Balasubramaniam, K.; Rajagopal, P. Holey-structured metamaterial lens for subwavelength resolution in ultrasonic characterization of metallic components. Appl. Phys. Lett. 2016, 108, 224101. [Google Scholar] [CrossRef]
- Amireddy, K.K.; Balasubramaniam, K.; Rajagopal, P. Porous metamaterials for deep sub-wavelength ultrasonic imaging. Appl. Phys. Lett. 2018, 113, 124102. [Google Scholar] [CrossRef]
- Blomme, E.; Bulcaen, D.; Cool, T.; Declercq, F.; Lust, P. Air-coupled ultrasonic assessment of wood veneer. Ultrasonics 2010, 50, 180–187. [Google Scholar] [CrossRef]
- Morozov, M.; Pierce, S.G.; Dobie, G.; Bolton, G.T.; Bennett, T. Robotic ultrasonic testing of AGR fuel cladding. Case Stud. Nondestruct. Test. Eval. 2016, 6, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Boccaccio, M.; Fierro, G.P.M.; Meo, M. Development of nonlinear acoustic and air-coupled techniques for non-destructive testing. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation, XIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 10971, p. 1097117. [Google Scholar]
- Zhabotinsky, M.; Eager, M.D.; Epstein, I.R. Refraction and reflection of chemical waves. Phys. Rev. Lett. 1993, 71, 1526. [Google Scholar] [CrossRef] [PubMed]
- Veselago, V.G. The Electrodynamics of Substances with Simultaneously Negative Values of Img Align = Absmiddle Alt = ϵ Eps/Img and μ. Phys. Uspekhi 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Karagodsky, V.; Chase, C.; Chang-Hasnain, C.J. Matrix Fabry–Perot resonance mechanism in high-contrast gratings. Opt. Lett. 2011, 36, 1704–1706. [Google Scholar] [CrossRef]
- Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub–diffraction-limited optical imaging with a silver superlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Christensen, J.N.; Jung, J.; Martín-Moreno, L.; Yin, X.; Fok, L.; Zhang, X.; Garcia-Vidal, F.J. A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat. Phys. 2011, 7, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Amireddy, K.K.; Balasubramaniam, K.; Rajagopal, P. Deep subwavelength ultrasonic imaging using optimized holey structured metamaterials. Sci. Rep. 2017, 7, 1–8. [Google Scholar]
- Bártolo, P.J. Stereolithography: Materials, Processes and Applications; Springer Science & Business Media: Boston, MA, USA, 2011. [Google Scholar]
- Jacobs, P.F. Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography; Society of Manufacturing Engineers: Southfield, MI, USA, 1992. [Google Scholar]
- Voet, V.S.D.; Strating, T.; Schnelting, G.H.M.; Dijkstra, P.; Tietema, M.; Xu, J.; Woortman, A.J.J.; Yang, Q.; Jager, J.; Folkersma, R. Biobased acrylate photocurable resin formulation for stereolithography 3D printing. ACS Omega 2018, 3, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Cochran, S. Ultrasonics Part 12. Fundamentals of ultrasonic phased arrays. Insight Non-Destr. Test. Cond. Monit. 2006, 48, 212–217. [Google Scholar] [CrossRef]
- Estrada, H.; Candelas, P.; Uris, A.; Belmar, F.; Meseguer, F.; de Abajo, F.J.G. Sound transmission through perforated plates with subwavelength hole arrays: A rigid-solid model. Wave Motion 2011, 48, 235–242. [Google Scholar] [CrossRef]
Medium | Acoustic Impedance [MRayls] |
---|---|
Aluminium | 17.1 |
Stainless Steel | 46.6 |
CFRP | 5.5–6.2 |
Water (20 °C) | 1.49 |
Air (20 °C) | 0.00043 |
Holey Structure | Hole Size d [mm] | Wall Thickness w [mm] | Length L [mm] | Design Frequency [kHz] |
---|---|---|---|---|
S1 | 4.9 | 4.9 | 34.3 | 5 |
S2 | 1.715 | 1.715 | 8.575 | 20 |
S3 | 1.143 | 1.143 | 5.716 | 30 |
S4 | 0.8575 | 0.8575 | 4.288 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boccaccio, M.; Rachiglia, P.; Malfense Fierro, G.P.; Pio Pucillo, G.; Meo, M. Deep-Subwavelength-Optimized Holey-Structured Metamaterial Lens for Nonlinear Air-Coupled Ultrasonic Imaging. Sensors 2021, 21, 1170. https://doi.org/10.3390/s21041170
Boccaccio M, Rachiglia P, Malfense Fierro GP, Pio Pucillo G, Meo M. Deep-Subwavelength-Optimized Holey-Structured Metamaterial Lens for Nonlinear Air-Coupled Ultrasonic Imaging. Sensors. 2021; 21(4):1170. https://doi.org/10.3390/s21041170
Chicago/Turabian StyleBoccaccio, Marco, Pasquale Rachiglia, Gian Piero Malfense Fierro, Giovanni Pio Pucillo, and Michele Meo. 2021. "Deep-Subwavelength-Optimized Holey-Structured Metamaterial Lens for Nonlinear Air-Coupled Ultrasonic Imaging" Sensors 21, no. 4: 1170. https://doi.org/10.3390/s21041170
APA StyleBoccaccio, M., Rachiglia, P., Malfense Fierro, G. P., Pio Pucillo, G., & Meo, M. (2021). Deep-Subwavelength-Optimized Holey-Structured Metamaterial Lens for Nonlinear Air-Coupled Ultrasonic Imaging. Sensors, 21(4), 1170. https://doi.org/10.3390/s21041170