Managing Vibration Training Safety by Using Knee Flexion Angle and Rating Perceived Exertion
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costantino, C.; Bertuletti, S.; Romiti, D. Efficacy of whole-body vibration board training on strength in athletes after anterior cruciate ligament reconstruction: A randomized controlled study. Clin. J. Sport Med. 2018, 28, 339–349. [Google Scholar] [CrossRef]
- Yang, W.W.; Chou, L.W.; Chen, W.H.; Shiang, T.Y.; Liu, C. Dual-frequency whole body vibration enhances vertical jumping and change-of-direction ability in rugby players. J. Sport Health Sci. 2017, 6, 346–351. [Google Scholar] [CrossRef][Green Version]
- Pamukoff, D.N.; Montgomery, M.M.; Choe, K.H.; Moffit, T.J.; Vakula, M.N. Effect of Whole-Body Vibration on Sagittal Plane Running Mechanics in Individuals With Anterior Cruciate Ligament Reconstruction: A Randomized Crossover Trial. Arch. Phys. Med. Rehabil. 2018, 99, 973–980. [Google Scholar] [CrossRef]
- Zafar, H.; Alghadir, A.; Anwer, S.; Al-Eisa, E. Therapeutic effects of whole-body vibration training in knee osteoarthritis: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2015, 96, 1525–1532. [Google Scholar] [CrossRef]
- Luo, J.; McNamara, B.; Moran, K. The use of vibration training to enhance muscle strength and power. Sports Med. 2005, 35, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Liu, C.; Chuang, L.R.; Chung, P.H.; Shiang, T.Y. Chronic effects of whole-body vibration on jumping performance and body balance using different frequencies and amplitudes with identical acceleration load. J. Sci. Med. Sport 2014, 17, 107–112. [Google Scholar] [CrossRef]
- Cardinale, M.; Bosco, C. The use of vibration as an exercise intervention. Exerc. Sport Sci. Rev. 2003, 31, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Savage, R.; Billing, D.; Furnell, A.; Netto, K.; Aisbett, B. Whole-body vibration and occupational physical performance: A review. Int. Arch. Occup. Environ. Health 2016, 89, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Guglielmino, C.; Musumeci, G. Early elbow osteoarthritis in competitive enduro motorcyclist. Scand. J. Med. Sci. Sports 2020, 30, 1287–1290. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G.; Loreto, C.; Leonardi, R.; Castorina, S.; Giunta, S.; Carnazza, M.L.; Trovato, F.M.; Pichler, K.; Weinberg, A.M. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J. Bone Miner. Metab. 2013, 31, 274–284. [Google Scholar] [CrossRef]
- Ishitake, T.; Ando, H.; Miyazaki, Y.; Matoba, F. Changes of visual performance induced by exposure to whole-body vibration. Kurume Med. J. 1998, 45, 59–62. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yan, J.-G.; Zhang, L.-l.; Agresti, M.; Yan, Y.; LoGiudice, J.; Sanger, J.R.; Matloub, H.S.; Pritchard, K.A., Jr.; Jaradeh, S.S.; Havlik, R. Cumulative brain injury from motor vehicle-induced whole-body vibration and prevention by human Apolipoprotein AI molecule mimetic (4F) peptide (an Apo AI mimetic). J. Stroke Cerebrovasc. Dis. 2015, 24, 2759–2773. [Google Scholar] [CrossRef]
- Amir, I.; Young, E.; Belloso, A. Self-limiting benign paroxysmal positional vertigo following use of whole-body vibration training plate. J. Laryngol. Otol. 2010, 124, 796–798. [Google Scholar] [CrossRef]
- Ljungberg, J.; Neely, G.; Lundström, R. Cognitive performance and subjective experience during combined exposures to whole-body vibration and noise. Int. Arch. Occup. Environ. Health 2004, 77, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Carlsöö, S. The effect of vibration on the skeleton, joints and muscles: A review of the literature. Appl. Ergon. 1982, 13, 251–258. [Google Scholar] [CrossRef]
- Kiiski, J.; Heinonen, A.; Järvinen, T.L.; Kannus, P.; Sievänen, H. Transmission of vertical whole body vibration to the human body. J. Bone Miner. Res. 2008, 23, 1318–1325. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Mechanical Vibration and Shock: Evaluation of Human Exposure to Whole-Body Vibration. In Part 1: Mechanical Vibration and Shock. Evaluation of Human Exposure to Whole-Body Vibration. General Requirements; International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- Muir, J.; Kiel, D.P.; Rubin, C.T. Safety and severity of accelerations delivered from whole body vibration exercise devices to standing adults. J. Sci. Med. Sport 2013, 16, 526–531. [Google Scholar] [CrossRef]
- Perchthaler, D.; Horstmann, T.; Grau, S. Variations in neuromuscular activity of thigh muscles during whole-body vibration in consideration of different biomechanical variables. J. Sports Sci. Med. 2013, 12, 439–446. [Google Scholar]
- Ritzmann, R.; Gollhofer, A.; Kramer, A. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur. J. Appl. Physiol. 2013, 113, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Munera, M.; Bertucci, W.; Duc, S.; Chiementin, X. Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises. Sports Biomech. 2016, 15, 409–428. [Google Scholar] [CrossRef]
- Lienhard, K.; Vienneau, J.; Friesenbichler, B.; Nigg, S.; Meste, O.; Nigg, B.M.; Colson, S.S. The effect of whole-body vibration on muscle activity in active and inactive subjects. Int. J. Sports Med. 2015, 36, 585–591. [Google Scholar] [CrossRef]
- Avelar, N.C.; Ribeiro, V.G.; Mezencio, B.; Fonseca, S.F.; Tossige-Gomes, R.; da Costa, S.J.; Szmuchrowski, L.; Gripp, F.; Coimbra, C.C.; Lacerda, A.C. Influence of the knee flexion on muscle activation and transmissibility during whole body vibration. J. Electromyogr. Kinesiol. 2013, 23, 844–850. [Google Scholar] [CrossRef]
- Cochrane, D.J.; Loram, I.D.; Stannard, S.R.; Rittweger, J. Changes in joint angle, muscle-tendon complex length, muscle contractile tissue displacement, and modulation of EMG activity during acute whole-body vibration. Muscle Nerve 2009, 40, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Nawayseh, N. Transmission of vibration from a vibrating plate to the head of standing people. Sports Biomech. 2019, 18, 482–500. [Google Scholar] [CrossRef]
- Caryn, R.C.; Hazell, T.J.; Dickey, J.P. Transmission of acceleration from a synchronous vibration exercise platform to the head. Int. J. Sports Med. 2014, 35, 330–338. [Google Scholar] [CrossRef][Green Version]
- Tankisheva, E.; Jonkers, I.; Boonen, S.; Delecluse, C.; van Lenthe, G.H.; Druyts, H.L.; Spaepen, P.; Verschueren, S.M. Transmission of whole-body vibration and its effect on muscle activation. J. Strength Cond. Res. 2013, 27, 2533–2541. [Google Scholar] [CrossRef]
- Wakeling, J.M.; Nigg, B.M.; Rozitis, A.I. Muscle activity damps the soft tissue resonance that occurs in response to pulsed and continuous vibrations. J. Appl. Physiol. 2002, 93, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.C.; Rymer, W.Z. Damping in reflexively active and areflexive lengthening muscle evaluated with inertial loads. J. Neurophysiol. 1998, 80, 3369–3372. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.; Hagbarth, K.E.; Löfstedt, L.; Wallin, B.G. The responses of human muscle spindle endings to vibration of non-contracting muscles. J. Physiol. 1976, 261, 673–693. [Google Scholar] [CrossRef] [PubMed]
- Cristi, C.; Collado, P.S.; Marquez, S.; Garatachea, N.; Cuevas, M.J. Whole-body vibration training increases physical fitness measures without alteration of inflammatory markers in older adults. Eur. J. Sport Sci. 2014, 14, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Marin, P.J.; Santos-Lozano, A.; Santin-Medeiros, F.; Delecluse, C.; Garatachea, N. A comparison of training intensity between whole-body vibration and conventional squat exercise. J. Electromyogr. Kinesiol. 2011, 21, 616–621. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bertucci, W.; Arfaoui, A.; Duc, S.; Letellier, T.; Brikci, A. Effect of whole body vibration in energy expenditure and perceived exertion during intense squat exercise. Acta Bioeng. Biomech. 2015, 17, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Paddan, G.; Griffin, M. The transmission of translational seat vibration to the head--I. vertical seat vibration. J. Biomech. 1988, 21, 191–197. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Sonza, A.; Volkel, N.; Zaro, M.A.; Achaval, M.; Hennig, E.M. A whole body vibration perception map and associated acceleration loads at the lower leg, hip and head. Med. Eng. Phys. 2015, 37, 642–649. [Google Scholar] [CrossRef] [PubMed]
Knee Angle Condition | 90 Degrees | 110 Degrees | 130 Degrees | 150 Degrees | F Value |
---|---|---|---|---|---|
Head transmissibility | 0.46 ± 0.12 | 0.32 ± 0.08 | 0.47 ± 0.07 | 0.76 ± 0.14 | 43.93 1 |
Knee transmissibility | 1.86 ± 0.51 | 1.61 ± 0.51 | 1.38 ± 0.41 | 1.47 ± 0.33 | 6.77 1 |
Rating of perceived exertion | 2.8 ± 1.0 | 2.3 ± 0.9 | 3.1 ± 1.1 | 4.3 ± 1.6 | 13.84 1 |
Transmissibility | RPE | |||
---|---|---|---|---|
90 Degrees | 110 Degrees | 130 Degrees | 150 Degrees | |
Head | 0.145 | 0.069 | −0.136 | 0.508 1 |
Knee | 0.025 | −0.129 | 0.040 | 0.127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, L.-R.; Yang, W.-W.; Chang, P.-L.; Chen, V.C.-F.; Liu, C.; Shiang, T.-Y. Managing Vibration Training Safety by Using Knee Flexion Angle and Rating Perceived Exertion. Sensors 2021, 21, 1158. https://doi.org/10.3390/s21041158
Chuang L-R, Yang W-W, Chang P-L, Chen VC-F, Liu C, Shiang T-Y. Managing Vibration Training Safety by Using Knee Flexion Angle and Rating Perceived Exertion. Sensors. 2021; 21(4):1158. https://doi.org/10.3390/s21041158
Chicago/Turabian StyleChuang, Long-Ren, Wen-Wen Yang, Po-Ling Chang, Vincent Chiun-Fan Chen, Chiang Liu, and Tzyy-Yuang Shiang. 2021. "Managing Vibration Training Safety by Using Knee Flexion Angle and Rating Perceived Exertion" Sensors 21, no. 4: 1158. https://doi.org/10.3390/s21041158
APA StyleChuang, L.-R., Yang, W.-W., Chang, P.-L., Chen, V. C.-F., Liu, C., & Shiang, T.-Y. (2021). Managing Vibration Training Safety by Using Knee Flexion Angle and Rating Perceived Exertion. Sensors, 21(4), 1158. https://doi.org/10.3390/s21041158