The Simulated Characterization and Suitability of Semiconductor Detectors for Strontium 90 Assay in Groundwater
Abstract
:1. Introduction
2. The Detection of Typical Beta Emitters Found at Nuclear Decommissioning Sites
2.1. Simulation Layout
2.2. Sensitivity to Radionuclides
3. Low Detectable Limit
4. Gallium-Arsenide (GaAs) Detector
5. Flexible Detectors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sellafield Groundwater Monitoring. 2016. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/705993/Groundwater_Monitoring_at_Sellafield_-_Annual_Data_Review_2016.pdf (accessed on 10 September 2020).
- Vajda, N.; Kim, C.K. Determination of Radiostrontium Isotopes: A Review of Analytical Methodology. Appl. Radiat. Isot. 2010, 68, 2306–2326. [Google Scholar] [CrossRef] [PubMed]
- Turkington, G.; Gamage, K.A.A.; Graham, J. Direct Measurement of Strontium 90 in Groundwater: Geometry Optimisation of a Photodiode Based Detector. J. Instrum. 2019, 14, P10018. [Google Scholar] [CrossRef]
- Acrorad. Available online: https://www.acrorad.co.jp/ (accessed on 7 January 2021).
- Del Sordo, S.; Abbene, L.; Caroli, E.; Mancini, A.M.; Zappettini, A.; Ubertini, P. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications. Sensors 2009, 9, 3491–3526. [Google Scholar] [CrossRef] [PubMed]
- Johns, P.M.; Nino, J.C. Room Temperature Semiconductor Detectors for Nuclear Security. J. Appl. Phys. 2019, 126, 040902. [Google Scholar] [CrossRef] [Green Version]
- Aliyu, M.M.; Islam, M.A.; Hamzah, N.R.; Karim, M.R.; Matin, M.A.; Sopian, K.; Amin, N. Recent Developments of Flexible CdTe Solar Cells on Metallic Substrates: Issues and Prospects. Int. J. Photoenergy 2012. [Google Scholar] [CrossRef]
- Salavei, A.; Menossi, D.; Piccinelli, F.; Kumar, A.; Mariotto, G.; Barbato, M.; Romeo, A.; Meneghini, M.; Meneghesso, G.; Meneghesso, S.; et al. Comparison of High Efficiency Flexible CdTe Solar Cells on Different Substrates at Low Temperature Deposition. Sol. Energy 2016, 139, 13–18. [Google Scholar] [CrossRef]
- Bosio, A.; Pasini, S.; Romeo, N. The History of Photovoltaics with Emphasis on CdTe Solar Cells and Modules. Coatings 2020, 10, 344. [Google Scholar] [CrossRef] [Green Version]
- Damulira, E.; Yusoff, M.N.S.; Omar, A.F.; Mohd Taib, N.H. A Review: Photonic Devices Used for Dosimetry in Medical Radiation. Sensors 2019, 19, 2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, T.; Igari, T.; Fukui, T.; Tozawa, R.; Gotoh, Y.; Sato, N.; Okuno, Y.; Kobayashi, T.; Imaizumi, M.; Akiyoshi, M. Gamma-Ray Irradiation Effects on CdTe Solar Cell Dosimeter. Jpn. J. Appl. Phys. 2021, 60, SBBF02. [Google Scholar] [CrossRef]
- Okuno, Y.; Yamaguchi, M.; Okubo, N.; Imaizumi, M. Degradation Prediction of a γ-Ray Radiation Dosimeter Using InGaP Solar Cells in a Primary Containment Vessel of the Fukushima Daiichi Nuclear Power Station. J. Nucl. Sci. Technol. 2020, 57, 457–462. [Google Scholar] [CrossRef]
- Ramanujam, J.; Bishop, D.M.; Todorov, T.K.; Gunawan, O.; Rath, J.; Nekovei, R.; Artegiani, E.; Romeo, A. Flexible CIGS, CdTe and a-Si:H Based Thin Film Solar Cells: A Review. Prog. Mater. Sci. 2020, 110, 100619. [Google Scholar] [CrossRef]
- Kim, W.S.; Han, S.; Ahn, J.; Um, W. Investigation of 3H, 99Tc, and 90Sr Transport in Fractured Rock and the Effects of Fracture-Filling/Coating Material at LILW Disposal Facility. Environ. Geochem. Health 2019, 41, 411–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geant4. Available online: http://www.geant4.org/geant4/ (accessed on 10 September 2020).
- Knoll, G.F. Radiation Detection and Measurement, 3rd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Niraula, M.; Nakamura, A.; Aoki, T.; Tomita, Y.; Hatanaka, Y. Stability Issues of High-Energy Resolution Diode Type CdTe Nuclear Radiation Detectors in a Long-Term Operation. Nucl. Instrum. Methods Phys. Res. Sect. A 2002, 491, 168–175. [Google Scholar] [CrossRef]
- Vacap, F.; Manjón, G.; Garcia-León, M. Efficiency Calibration of a Liquid Scintillation Counter for 90Y Cherenkov Counting. Nucl. Instrum. Methods Phys. Res. Sect. A 1998, 406, 267–275. [Google Scholar] [CrossRef]
- Schuster, C.S.; Smith, B.R.; Sanderson, B.J.; Mullins, J.T.; Atkins, J.; Joshi, P.; McNamara, L.; Krauss, T.F.; Jenkins, D.G. Flexible Silicon-Based Alpha-Particle Detector. Appl. Phys. Lett. 2017, 111, 073505. [Google Scholar] [CrossRef] [Green Version]
Activity BqL | Sr Counts | Y Counts | K Counts | C Counts | Cs |
---|---|---|---|---|---|
100,000 | 12,752 | 242,593 | 162,060 | 0 | 78,013 |
10,000 | 1287 | 24,246 | 16,260 | 0 | 7842 |
1000 | 136 | 2438 | 1620 | 0 | 792 |
100 | 10 | 246 | 172 | 0 | 73 |
10 | 1 | 21 | 18 | 0 | 10 |
1 | 0 | 1 | 0 | 0 | 1 |
Length of Measurement | Limit of Detection (BqL) |
---|---|
10 min | 799 |
1 h | 323 |
24 h | 66 |
48 h | 46 |
168 h | 25 |
Activity BqL | Sr Counts | Y Counts | K Counts | C Counts | Cs Counts |
---|---|---|---|---|---|
100,000 | 28,428 (+222%) | 834,089 (344%) | 505,585 (311%) | 0 | 106,997 (137%) |
10,000 | 2859 (+222%) | 83,203 (343%) | 50,438 (310%) | 0 | 10,563 (134%) |
1000 | 321 (+236%) | 8130 (333%) | 5080 (313%) | 0 | 1051 (133%) |
100 | 32 (+320%) | 802 (326%) | 506 (294%) | 0 | 106 (145%) |
10 | 3 | 81 | 58 | 0 | 7 |
1 | 1 | 15 | 10 | 0 | 0 |
Length of Measurement | Limit of Detection (BqL) (a) | Limit of Detection (BqL) (b) |
---|---|---|
0.17 h | 221 | 18 |
1 h | 91 | 7 |
24 h | 18 | 1 |
48 h | 13 | 1 |
168 h | 7 | 1 |
Detector 1 | Detector 2 | Detector 3 | Detector 4 | |
---|---|---|---|---|
Dimensions (mm) | 30 × 15 | 90 × 15 | 30 × 15 | 90 × 15 |
Radius (mm) | 15 | 15 | 20 | 20 |
100,000 BqL | 47,290 | 141,953 | 26,093 | 78,430 |
10,000 BqL | 4729 | 14,134 | 2649 | 7932 |
1000 BqL | 438 | 1373 | 278 | 782 |
100 BqL | 41 | 117 | 27 | 68 |
10 BqL | 7 | 17 | 2 | 11 |
1 BqL | 0 | 0 | 0 | 1 |
Length of Measurement | Limit of Detection (BqL) |
---|---|
0.17 h | 51 |
1 h | 20 |
24 h | 4 |
48 h | 3 |
168 h | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turkington, G.; Gamage, K.A.A.; Graham, J. The Simulated Characterization and Suitability of Semiconductor Detectors for Strontium 90 Assay in Groundwater. Sensors 2021, 21, 984. https://doi.org/10.3390/s21030984
Turkington G, Gamage KAA, Graham J. The Simulated Characterization and Suitability of Semiconductor Detectors for Strontium 90 Assay in Groundwater. Sensors. 2021; 21(3):984. https://doi.org/10.3390/s21030984
Chicago/Turabian StyleTurkington, Graeme, Kelum A. A. Gamage, and James Graham. 2021. "The Simulated Characterization and Suitability of Semiconductor Detectors for Strontium 90 Assay in Groundwater" Sensors 21, no. 3: 984. https://doi.org/10.3390/s21030984
APA StyleTurkington, G., Gamage, K. A. A., & Graham, J. (2021). The Simulated Characterization and Suitability of Semiconductor Detectors for Strontium 90 Assay in Groundwater. Sensors, 21(3), 984. https://doi.org/10.3390/s21030984