A Potential Plasmonic Biosensor Based Asymmetric Metal Ring Cavity with Extremely Narrow Linewidth and High Sensitivity
Abstract
:1. Introduction
2. Structure Design and Theory Analysis
3. Results and Discussion
3.1. Influence of Structural Parameter Variation on Sensing Characteristics
3.1.1. Influence of the Thickness of Au Film on the Sensitivity and FOM
3.1.2. Influence of the Thickness of the SiO2 Spacer Layer on the Sensitivity and FOM
3.1.3. Influence of the Size of the Asymmetrical Ring Cavity on the Sensitivity and FOM
3.1.4. Influence of the Position of the Disks in the Asymmetrical Ring Cavity on the Sensitivity and FOM
3.2. Influence of the Material of the Structure on the Sensitivity and FOM
3.3. Absorption of the Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di, L.; Yang, H.; Xian, T.; Chen, X. Construction of Z-Scheme g-C3N4/CNT/Bi2Fe4O9 Composites with Improved Simulated-Sunlight Photocatalytic Activity for the Dye Degradation. Micromachines 2018, 9, 613. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Tong, H.; Wu, X.; Zhu, J.; Wang, X.; Yang, H.; Qi, Y. Theoretical Study of Multiexposure Zeroth-Order Waveguide Mode Interference Lithography. Opt. Quantum Electron. 2018, 50, 335. [Google Scholar] [CrossRef]
- Wang, X.; Tong, H.; Pang, Z.; Zhu, J.; Wu, X.; Yang, H.; Qi, Y. Theoretical Realization of Three-Dimensional Nanolattice Structure Fabrication Based on High-Order Waveguide-Mode Interference and Sample Rotation. Opt. Quantum Electron. 2019, 51, 38. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, H.; Zhao, X.; Li, R.; Wang, X. Enhanced Photocatalytic Activity of Surface Disorder-Engineered CaTiO3. Mater. Res. Bull. 2018, 105, 286–290. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, X.; Yi, Z.; Yi, Y.; Xu, X. Fabrication of P-n Heterostructure ZnO/Si Moth-Eye Structures: Antireflection, Enhanced Charge Separation and Photocatalytic Properties. Appl. Surface Sci. 2018, 441, 40–48. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, H.; Cui, Z.; Zhang, H.; Wang, X. A Novel Bi4Ti3O12/Ag3PO4 Heterojunction Photocatalyst with Enhanced Photocatalytic Performance. Nanoscale Res. Lett. 2017, 12, 608. [Google Scholar] [CrossRef]
- Campion, A.; Kambhampati, P. Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 1998, 27, 241. [Google Scholar] [CrossRef]
- Chen, C.; Qi, Z.-M. Nanoporous Gold Films Prepared by Sputtering-Dealloying Combination for Total Internal Reflection SERS Measurement. Opt. Mater. Express 2016, 6, 1561. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; Mcquillan, A.J. Raman spectra of pyridzne adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 4. [Google Scholar] [CrossRef]
- Langer, J.; de Aberasturi, D.J.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [Green Version]
- Leidner, L.; Stäb, J.; Adam, J.T.; Gauglitz, G. Surface-Enhanced Infrared Absorption Studies towards a New Optical Biosensor. Beilstein J. Nanotechnol. 2016, 7, 1736–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di, L.; Yang, H.; Xian, T.; Liu, X.; Chen, X. Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation. Nanomaterials 2019, 9, 399. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Wang, F.; Wang, S.; Wang, X.; Yi, Z.; Yang, H. Photocatalytic Activity Tuning in a Novel Ag2S/CQDs/CuBi2O4 Composite: Synthesis and Photocatalytic Mechanism. Mater. Res. Bull. 2019, 115, 140–149. [Google Scholar] [CrossRef]
- Lee, T.-H.; Hirst, D.J.; Kulkarni, K.; Del Borgo, M.P.; Aguilar, M.-I. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem. Rev. 2018, 118, 5392–5487. [Google Scholar] [CrossRef]
- Yesilkoy, F.; Arvelo, E.R.; Jahani, Y.; Liu, M.; Tittl, A.; Cevher, V.; Kivshar, Y.; Altug, H. Ultrasensitive Hyperspectral Imaging and Biodetection Enabled by Dielectric Metasurfaces. Nat. Photonics 2019, 13, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Hao, F.; Sonnefraud, Y.; Dorpe, P.V.; Maier, S.A.; Halas, N.J.; Nordlander, P. Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Lett. 2008, 8, 3983–3988. [Google Scholar] [CrossRef] [PubMed]
- Langer, J.; Novikov, S.M.; Liz-Marzán, L.M. Sensing Using Plasmonic Nanostructures and Nanoparticles. Nanotechnology 2015, 26, 322001. [Google Scholar] [CrossRef]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, H.; Zhu, W.; Agrawal, A.; Lezec, H.; Li, L.; Peng, W.; Zou, Y.; Lu, Y.; Xu, T. Subradiant Dipolar Interactions in Plasmonic Nanoring Resonator Array for Integrated Label-Free Biosensing. ACS Sens. 2017, 2, 1796–1804. [Google Scholar] [CrossRef]
- Chung, T.; Lee, S.-Y.; Song, E.Y.; Chun, H.; Lee, B. Plasmonic Nanostructures for Nano-Scale Bio-Sensing. Sensors 2011, 11, 10907–10929. [Google Scholar] [CrossRef]
- Xu, T.; Geng, Z. Strategies to Improve Performances of LSPR Biosensing: Structure, Materials, and Interface Modification. Biosens. Bioelectron. 2021, 174, 112850. [Google Scholar] [CrossRef] [PubMed]
- Akiyoshi, K.; Tanaka, Y.Y.; Ishida, T.; Shimura, T.; Tatsuma, T. Plasmonic–Diffractive Hybrid Sensors Based on a Gold Nanoprism Array. ACS Appl. Nano Mater. 2018, 1, 5994–5999. [Google Scholar] [CrossRef]
- Bhalla, N.; Jamshaid, A.; Leung, M.H.M.; Ishizu, N.; Shen, A.Q. Electrical Contact of Metals at the Nanoscale Overcomes the Oxidative Susceptibility of Silver-Based Nanobiosensors. ACS Appl. Nano Mater. 2019, 2, 2064–2075. [Google Scholar] [CrossRef] [Green Version]
- Coskun, A.F.; Cetin, A.E.; Galarreta, B.C.; Alvarez, D.A.; Altug, H.; Ozcan, A. Lensfree Optofluidic Plasmonic Sensor for Real-Time and Label-Free Monitoring of Molecular Binding Events over a Wide Field-of-View. Sci. Rep. 2015, 4, 6789. [Google Scholar] [CrossRef] [PubMed]
- Ode, K.; Honjo, M.; Takashima, Y.; Tsuruoka, T.; Akamatsu, K. Highly Sensitive Plasmonic Optical Sensors Based on Gold Core–Satellite Nanostructures Immobilized on Glass Substrates. ACS Appl. Mater. Interfaces 2016, 8, 20522–20526. [Google Scholar] [CrossRef] [PubMed]
- Pallarola, D.; Schneckenburger, M.; Spatz, J.P.; Pacholski, C. Real-Time Monitoring of Electrochemical Controlled Protein Adsorption by a Plasmonic Nanowire Based Sensor. Chem. Commun. 2013, 49, 8326. [Google Scholar] [CrossRef]
- Shakoor, A.; Cheah, B.C.; Hao, D.; Al-Rawhani, M.; Nagy, B.; Grant, J.; Dale, C.; Keegan, N.; McNeil, C.; Cumming, D.R.S. Plasmonic Sensor Monolithically Integrated with a CMOS Photodiode. ACS Photonics 2016, 3, 1926–1933. [Google Scholar] [CrossRef]
- Wang, X.; Bai, X.; Pang, Z.; Yang, H.; Qi, Y. Investigation of Surface Plasmons in Kretschmann Structure Loaded with a Silver Nano-Cube. Results Phys. 2019, 12, 1866–1870. [Google Scholar] [CrossRef]
- Doiron, B.; Mota, M.; Wells, M.P.; Bower, R.; Mihai, A.; Li, Y.; Cohen, L.F.; Alford, N.M.; Petrov, P.K.; Oulton, R.F.; et al. Quantifying Figures of Merit for Localized Surface Plasmon Resonance Applications: A Materials Survey. ACS Photonics 2019, 6, 240–259. [Google Scholar] [CrossRef]
- Gao, S.; Yue, W.; Park, C.-S.; Lee, S.-S.; Kim, E.-S.; Choi, D.-Y. Aluminum Plasmonic Metasurface Enabling a Wavelength-Insensitive Phase Gradient for Linearly Polarized Visible Light. ACS Photonics 2017, 4, 322–328. [Google Scholar] [CrossRef]
- Siddique, R.H.; Kumar, S.; Narasimhan, V.; Kwon, H.; Choo, H. Aluminum Metasurface with Hybrid Multipolar Plasmons for 1000-Fold Broadband Visible Fluorescence Enhancement and Multiplexed Biosensing. ACS Nano 2019, 13, 13775–13783. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Yi, Z.; Chen, X.; Tang, Y.; Yi, Y.; Zhou, Z.; Wu, X.; Huang, Z.; Yi, Y.; Zhang, G. Dual-Band Infrared Perfect Absorber Based on a Ag-Dielectric-Ag Multilayer Films with Nanoring Grooves Arrays. Plasmonics 2020, 15, 93–100. [Google Scholar] [CrossRef]
- Lee, M.; Jeon, H.; Kim, S. A Highly Tunable and Fully Biocompatible Silk Nanoplasmonic Optical Sensor. Nano Lett. 2015, 15, 3358–3363. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-S.; Xiong, X.; Hu, S.; Shi, W.; Chen, Y.; Zhu, W.; Zheng, H.; Yu, J.; Azeman, N.H.; Luo, Y.; et al. Photonic Cavity Enhanced High-Performance Surface Plasmon Resonance Biosensor. Photon. Res. 2020, 8, 448. [Google Scholar] [CrossRef]
- Vala, M.; Ertsgaard, C.T.; Wittenberg, N.J.; Oh, S.-H. Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry. ACS Sens. 2019, 4, 3265–3274. [Google Scholar] [CrossRef]
- Zhan, C.; Liu, B.-W.; Tian, Z.-Q.; Ren, B. Determining the Interfacial Refractive Index via Ultrasensitive Plasmonic Sensors. J. Am. Chem. Soc. 2020, 142, 10905–10909. [Google Scholar] [CrossRef]
- Cen, C.; Chen, Z.; Xu, D.; Jiang, L.; Chen, X.; Yi, Z.; Wu, P.; Li, G.; Yi, Y. High Quality Factor, High Sensitivity Metamaterial Graphene—Perfect Absorber Based on Critical Coupling Theory and Impedance Matching. Nanomaterials 2020, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared Perfect Absorber and Its Application As Plasmonic Sensor. Nano Lett. 2010, 10, 2342–2348. [Google Scholar] [CrossRef]
(Unit: nm) | Au Film Thickness (d1) | SiO2 Spacer Layer Thickness (d2) | Radius of Disks (r) | Radius of Round Holes (R) | Center Distance of the Circular Hole of The Disc (x) |
---|---|---|---|---|---|
Standard | 130 | 30 | 150 | 250 | 50 |
Case A | 110:10:150 1 | 30 | 150 | 250 | 50 |
Case B | 130 | 20:5:40 | 150 | 250 | 50 |
Case C | 130 | 30 | 105:15:195 | 205:15:295 | 50 |
Case D | 130 | 30 | 150 | 250 | 0:10:100 |
Metal Materials | Sensitivity | R2 of Sensitivity | FOM (Refractive Index = 1.33) | FWHM |
---|---|---|---|---|
Au | 440.18929 | 0.99943 | 52.64698 | 8.36115 |
Ag | 546.20252 | 0.99993 | 59.71468 | 89.14687 |
Cu | 429.11429 | 0.99679 | 33.28716 | 12.89128 |
Al | 563.21429 | 0.99997 | 205.00363 | 2.74734 |
Pd | 556.84218 | 0.99980 | 45.01732 | 12.36951 |
Rh | 566.50357 | 0.99997 | 108.86442 | 5.20375 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Geng, Z.; Su, Y. A Potential Plasmonic Biosensor Based Asymmetric Metal Ring Cavity with Extremely Narrow Linewidth and High Sensitivity. Sensors 2021, 21, 752. https://doi.org/10.3390/s21030752
Xu T, Geng Z, Su Y. A Potential Plasmonic Biosensor Based Asymmetric Metal Ring Cavity with Extremely Narrow Linewidth and High Sensitivity. Sensors. 2021; 21(3):752. https://doi.org/10.3390/s21030752
Chicago/Turabian StyleXu, Tianping, Zhaoxin Geng, and Yue Su. 2021. "A Potential Plasmonic Biosensor Based Asymmetric Metal Ring Cavity with Extremely Narrow Linewidth and High Sensitivity" Sensors 21, no. 3: 752. https://doi.org/10.3390/s21030752
APA StyleXu, T., Geng, Z., & Su, Y. (2021). A Potential Plasmonic Biosensor Based Asymmetric Metal Ring Cavity with Extremely Narrow Linewidth and High Sensitivity. Sensors, 21(3), 752. https://doi.org/10.3390/s21030752