Sensitive Fluorescence Assay for the Detection of Alkaline Phosphatase Based on a Cu2+-Thiamine System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Apparatus
2.3. Optimization of ALP Detection
2.4. Fluorescence-Based Determination of ALP Activity
2.5. Selectivity of ALP
2.6. Inhibition Investigation
2.7. ALP Activity Assay in Human Serum Samples
2.8. Statistical Analysis
3. Results and Discussion
3.1. Principles of ALP Activity Detection
3.2. Validation of ALP Assay
3.3. Optimization of Experimental Conditions
3.4. Determination of ALP Activity by the Proposed Method
3.5. Selectivity for ALP Activity Assay
3.6. Assay of ALP Activity Inhibitor
3.7. Analysis of ALP in Human Serum Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coleman, J.E. Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 441–483. [Google Scholar]
- Harris, H. The human alkaline phosphatases: What we know and what we don’t know. Clin. Chim. Acta 1990, 186, 133–150. [Google Scholar]
- Tang, Z.; Chen, H.; He, H.; Ma, C. Assays for alkaline phosphatase activity: Progress and prospects. TrAC Trends Anal. Chem. 2019, 113, 32–43. [Google Scholar]
- Julien, S.G.; Dubé, N.; Hardy, S.; Tremblay, M.L. Inside the human cancer tyrosine phosphatome. Nat. Rev. Cancer 2011, 11, 35–49. [Google Scholar]
- Ooi, K.; Shiraki, K.; Morishita, Y.; Nobori, T. High-molecular intestinal alkaline phosphatase in chronic liver diseases. J. Clin. Lab. Anal. 2007, 21, 133–139. [Google Scholar]
- Colombatto, P.; Randone, A.; Civitico, G.; Gorin, J.M.; Dolci, L.; Medaina, N.; Oliveri, F.; Verme, G.; Marchiaro, G.; Pagni, R.; et al. Hepatitis G virus RNA in the serum of patients with elevated gamma glutamyl transpeptidase and alkaline phosphatase: A specific liver disease. J. Viral Hepat. 1996, 3, 301–306. [Google Scholar]
- Lorente, J.A.; Valenzuela, H.; Morote, J.; Gelabert, A. Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 1999, 26, 625–632. [Google Scholar]
- Li, X.; Zhu, L.; Zhou, Y.; Yin, H.; Ai, S. Enhanced Photoelectrochemical Method for Sensitive Detection of Protein Kinase a Activity Using TiO2/g-C3N4, PAMAM Dendrimer, and Alkaline Phosphatase. Anal. Chem. 2017, 89, 2369–2376. [Google Scholar]
- Liu, Y.Q.; Xiong, E.H.; Li, X.Y.; Li, J.J.; Zhang, X.H.; Chen, J.H. Sensitive electrochemical assay of alkaline phosphatase activity based on TdT-mediated hemin/G-quadruplex DNAzyme nanowires for signal amplification. Biosens. Bioelectron. 2017, 87, 970–975. [Google Scholar]
- Ma, J.-L.; Yin, B.-C.; Wu, X.; Ye, B.-C. Copper-Mediated DNA-Scaffolded Silver Nanocluster On–Off Switch for Detection of Pyrophosphate and Alkaline Phosphatase. Anal. Chem. 2016, 88, 9219–9225. [Google Scholar]
- Liu, H.S.; Ma, C.B.; Wang, J.; Wang, K.M.; Wu, K.F. A turn-on fluorescent method for determination of the activity of alkaline phosphatase based on dsDNA-templated copper nanoparticles and exonuclease based amplification. Microchim. Acta 2017, 184, 2483–2488. [Google Scholar]
- Zhao, M.; Guo, Y.; Wang, L.; Luo, F.; Lin, C.; Lin, Z.; Chen, G. A sensitive fluorescence biosensor for alkaline phosphatase activity based on the Cu(II)-dependent DNAzyme. Anal. Chim. Acta 2016, 948, 98–103. [Google Scholar]
- Mei, Y.; Hu, Q.; Zhou, B.; Zhang, Y.; He, M.; Xu, T.; Li, F.; Kong, J. Fluorescence quenching based alkaline phosphatase activity detection. Talanta 2018, 176, 52–58. [Google Scholar]
- Wang, C.; Gao, J.; Cao, Y.; Tan, H. Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal. Chim. Acta 2018, 1004, 74–81. [Google Scholar]
- Zhang, X.; Sun, Y.; Lin, L.; Shi, C.; Wang, G.; Zhang, X. Naked-eye sensitive detection of alkaline phosphatase (ALP) and pyrophosphate (PPi) based on a horseradish peroxidase catalytic colorimetric system with Cu(ii). Analyst 2016, 141, 5549–5554. [Google Scholar]
- Lakra, S.; Jadhav, V.J.; Garg, S.R. Development of a Chromatographic Method for the Determination of Alkaline Phosphatase Activity in Pasteurized Milk. Food Anal. Methods 2016, 9, 2002–2009. [Google Scholar]
- Ruan, C.; Wang, W.; Gu, B. Detection of Alkaline Phosphatase Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2006, 78, 3379–3384. [Google Scholar]
- Wu, Z.; Zhou, C.-H.; Pan, L.-J.; Zeng, T.; Zhu, L.; Pang, D.-W.; Zhang, Z.-L. Reliable Digital Single Molecule Electrochemistry for Ultrasensitive Alkaline Phosphatase Detection. Anal. Chem. 2016, 88, 9166–9172. [Google Scholar]
- Tang, Z.; Zhang, H.; Ma, C.; Gu, P.; Zhang, G.; Wu, K.; Chen, M.; Wang, K. Colorimetric determination of the activity of alkaline phosphatase based on the use of Cu(II)-modulated G-quadruplex-based DNAzymes. Microchim. Acta 2018, 185, 109. [Google Scholar]
- Dong, L.; Miao, Q.; Hai, Z.; Yuan, Y.; Liang, G. Enzymatic Hydrogelation-Induced Fluorescence Turn-Off for Sensing Alkaline Phosphatase in Vitro and in Living Cells. Anal. Chem. 2015, 87, 6475–6478. [Google Scholar]
- Guo, L.; Chen, D.; Yang, M. DNA-templated silver nanoclusters for fluorometric determination of the activity and inhibition of alkaline phosphatase. Microchim. Acta 2017, 85, 2165–2170. [Google Scholar]
- Liu, Y.; Schanze, K.S. Conjugated Polyelectrolyte-Based Real-Time Fluorescence Assay for Alkaline Phosphatase with Pyrophosphate as Substrate. Anal. Chem. 2008, 80, 8605–8612. [Google Scholar]
- Qian, Z.; Chai, L.; Tang, C.; Huang, Y.; Chen, J.; Feng, H. Carbon Quantum Dots-Based Recyclable Real-Time Fluorescence Assay for Alkaline Phosphatase with Adenosine Triphosphate as Substrate. Anal. Chem. 2015, 87, 2966–2973. [Google Scholar]
- Qu, F.; Pei, H.; Kong, R.-M.; Zhu, S.; Xia, L. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 2017, 165, 136–142. [Google Scholar]
- He, Y.; Jiao, B.N. Determination of the activity of alkaline phosphatase based on the use of ssDNA-templated fluorescent silver nanoclusters and on enzyme-triggered silver reduction. Microchim. Acta 2017, 184, 4167–4173. [Google Scholar]
- Tan, H.; Li, Q.; Zhou, Z.; Ma, C.; Song, Y.; Xu, F.; Wang, L. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal. Chim. Acta 2015, 856, 90–95. [Google Scholar]
- Ni, P.; Chen, C.; Jiang, Y.; Zhao, Z.; Lu, Y. Fluorometric determination of sulfide ions via its inhibitory effect on the oxidation of thiamine by Cu(II) ions. Microchim. Acta 2018, 185, 362. [Google Scholar]
- Purbia, R.; Paria, S. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens. Bioelectron. 2016, 79, 467–475. [Google Scholar]
- Perezruiz, T.; Martinezlozano, C.; Tomas, V.; Ibarra, I. Flow injection fluorimetric determination of thiamine and copper based on the formation of thiochrome. Talanta 1992, 39, 907–911. [Google Scholar]
- Du, J.; Xiong, L.; Ma, C.; Liu, H.; Wang, J.; Wang, K. Label-free DNA hairpin probe for real-time monitoring of alkaline phosphatase activity. Anal. Methods 2016, 8, 5095–5100. [Google Scholar]
- Xu, A.-Z.; Zhang, L.; Zeng, H.-H.; Liang, R.-P.; Qiu, J.-D. Fluorometric determination of the activity of alkaline phosphatase based on the competitive binding of gold nanoparticles and pyrophosphate to CePO4:Tb nanorods. Microchim. Acta 2018, 185, 288. [Google Scholar]
- Qian, Z.S.; Chai, L.J.; Huang, Y.Y.; Tang, C.; Shen, J.J.; Chen, J.R.; Feng, H. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots. Biosens. Bioelectron. 2015, 68, 675–680. [Google Scholar]
- Gibbons, I.R.; Cosson, M.P.; Evans, J.A.; Gibbons, B.H.; Houck, B.; Martinson, K.H.; Sale, W.S.; Tang, W.J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc. Natl. Acad. Sci. USA 1978, 75, 2220–2224. [Google Scholar]
Method | Material | LOD (U/L) | Dynamic Range (U/L) | Reference |
---|---|---|---|---|
Colorimetry | Cu2+-HRP-TMB-H2O2 system | 5.4 | 0–120 | 15 |
Colorimetry | Cu-MOFs | 0.19 | 1–34 | 14 |
Electrochemistry | AuNPs/glassy carbon | 0.03 | 0.1–5 | 9 |
Fluorescence | Cu(II)-dependent DNAzyme | 0.14 | 0.36–54.55 | 12 |
Fluorescence | Thioflavin T | 1 | 1–200 | 32 |
Fluorescence | AuNPs and nanorod | 0.06 | 0.2–100 | 33 |
Fluorescence | Carbon quantum dot | 1.1 | 6.7–782.6 | 34 |
Fluorescence | Cu2+-TH system | 0.08 | 0.1–100 | This work |
Sample | Added (U/L) | Found (U/L) | Recovery (%) |
---|---|---|---|
1 | 10 | 10.13 ± 0.78 | 101.3 |
2 | 50 | 48.53 ± 0.24 | 97.06 |
3 | 80 | 82.34 ± 0.69 | 102.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Liu, X.; Ma, C. Sensitive Fluorescence Assay for the Detection of Alkaline Phosphatase Based on a Cu2+-Thiamine System. Sensors 2021, 21, 674. https://doi.org/10.3390/s21030674
Zhao H, Liu X, Ma C. Sensitive Fluorescence Assay for the Detection of Alkaline Phosphatase Based on a Cu2+-Thiamine System. Sensors. 2021; 21(3):674. https://doi.org/10.3390/s21030674
Chicago/Turabian StyleZhao, Han, Xinfa Liu, and Changbei Ma. 2021. "Sensitive Fluorescence Assay for the Detection of Alkaline Phosphatase Based on a Cu2+-Thiamine System" Sensors 21, no. 3: 674. https://doi.org/10.3390/s21030674
APA StyleZhao, H., Liu, X., & Ma, C. (2021). Sensitive Fluorescence Assay for the Detection of Alkaline Phosphatase Based on a Cu2+-Thiamine System. Sensors, 21(3), 674. https://doi.org/10.3390/s21030674