Software for Matching Standard Activity Enzyme Biosensors for Soil Pollution Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basis for Software Development
2.2. Experiment Scheme and Determination of Soil Characteristics of Standard Soil Substrates
2.3. Enzymatic Assay
3. Results and Discussion
- The program reads reference soil’s data from a *.js file with json object inside.
- The number of reference soils (k) is estimated.
- The program reads sample soil’s data from the program’s input box.
- Sample‘s index is equating to zero. The minimum deviation is equal to the maximum possible number.
- Loop through each element of the source data array.
- Based on Equation (1), the ED is calculated for the reference and investigated soils.
- If calculated ED is lower than minimum deviation, minimum deviation is equating to ED. Index of minimum reference deviation is equating to current loop value.
- According to the obtained index from the array of reference soil, all the data for the most suitable reference soil are obtained.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amine, A.H.; Mohammadi, H.; Bourais, I.; Palleschi, G. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens. Bioelectron. 2006, 21, 1405–1423. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Malik, A. Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019, 140, 111348. [Google Scholar] [CrossRef] [PubMed]
- Bachan Upadhyay, L.S.; Verma, N. Enzyme inhibition based biosensors: A review. Anal. Lett. 2013, 46, 225–241. [Google Scholar] [CrossRef]
- Kolosova, E.M.; Sutormin, O.S.; Esimbekova, E.N.; Lonshakova-Mukina, V.I.; Kratasyuk, V.A. Set of enzymatic bioassays for assessment of soil contamination. Dokl. Biol. Sci. 2019, 489, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Esimbekova, E.N.; Nemtseva, E.V.; Bezrukikh, A.E.; Jukova, G.V.; Lisitsa, A.E.; Lonshakova-Mukina, V.I.; Rimatskaya, N.V.; Sutormin, O.S.; Kratasyuk, V.A. Bioluminescent enzyme inhibition-based assay to predict the potential toxicity of carbon nanomaterials. Toxicol. In Vitro 2017, 45, 128–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esimbekova, E.; Kratasyuk, V.; Shimomura, O. Application of enzyme bioluminescence in ecology. In Bioluminescence: Fundamentals and Applications in Biotechnology; Thouand, G., Marks, R., Eds.; Springer: Berlin, Germany, 2014; pp. 67–105. [Google Scholar]
- Sutormin, O.S.; Kolosova, E.M.; Nemtseva, E.V.; Iskorneva, O.V.; Lisitsa, A.E.; Matvienko, V.S.; Esimbekova, E.N.; Kratasyuk, V.A. Enzymatic bioassay of soil: Sensitivity comparison of mono-, double- and triple-enzyme systems to soil toxicants. Tsitologiya 2018, 60, 826–829. [Google Scholar] [CrossRef]
- Arduini, F.; Ricci, F.; Tuta, C.S.; Moscone, D.; Amine, A.; Palleschi, G. Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen printed electrode. Anal. Chim. Acta 2006, 580, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Semenov, A.M.; Sokolov, M.S. The concept of soil health: Fundamental and applied aspects of the justification of the evaluation criteria. Agrokhimiya 2010, 1, 3–16. [Google Scholar]
- OECD Guidelines for the Testing of Chemicals, Section 2. Available online: http://dx.doi.org/10.1787/9789264070042-en (accessed on 22 December 2020).
- Van Gestel, C.A.M. Soil ecotoxicology: State of the art and future directions. ZooKeys 2012, 176, 275. [Google Scholar] [CrossRef] [Green Version]
- Davies, N.A.; Hodson, M.E.; Black, S. Is the OECD acute worm toxicity test environmentally relevant? The effect of mineral form on calculated lead toxicity. Environ. Pollut. 2003, 121, 49–54. [Google Scholar] [CrossRef]
- Criel, P.; Lock, K.; Van Eeckhout, H.; Oorts, K.; Smolders, E.; Janssen, C.R. Influence of soil properties on copper toxicity for two soil invertebrates. Environ. Toxicol. Chem. 2008, 27, 1748–1755. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.J.; Novais, S.; Römbke, J.; Soares, A.M. Avoidance test with Enchytraeus albidus (Enchytraeidae): Effects of different exposure time and soil properties. Environ. Pollut. 2008, 155, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Prato, E.; Parlapiano, I.; Biandolino, F. Ecotoxicological evaluation of sediments by battery bioassays: Application and comparison of two integrated classification systems. Chem. Ecol. 2015, 31, 661–678. [Google Scholar] [CrossRef]
- Lors, C.; Ponge, J.F.; Aldaya, M.M.; Damidot, D. Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils. Environ. Pollut. 2011, 159, 2974–2981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terekhova, V.A.; Pukalchik, M.A.; Yakovlev, A.S. The triad approach to ecological assessment of urban soils. Eurasian Soil Sci. 2014, 47, 952–958. [Google Scholar] [CrossRef]
- Guo, W.; Yi, X.; Chen, Y.; Wang, X. Soil spatial information management system based on WebGIS and barcode technology. Trans. Chin. Soc. Agric. Eng. 2010, 26, 251–256. [Google Scholar]
- GOST 12536-2014, Soils. Methods of Laboratory Granulometric (Grain-Size) and Microaggregate Distribution. Available online: https://www.russiangost.com/p-138335-gost-12536-2014.aspx (accessed on 22 December 2020).
- GOST 26483-85. Soils. Preparations of Salt Extract and Determination of Its pH by CINAO Method. Available online: https://www.russiangost.com/p-50090-gost-26483-85.aspx (accessed on 22 December 2020).
- GOST 26213-91. Soils. Methods for Determination of Organic Matter. Available online: https://www.russiangost.com/p-52750-gost-26213-91.aspx (accessed on 22 December 2020).
# | Characteristic Abbreviation | Description | Unit |
---|---|---|---|
1 | RA | Residual activity of BChE | A/A0, % |
2 | T2 | Residual luminescence value of Red + Luc system | I/I0, % |
3 | T3 | Residual luminescence value of LDH + Red + Luc system | I/I0, % |
4 | D250 | Optical density of an aqueous extract from soils at a wavelength of 250 nm | Optical density units |
5 | Humus | Mass fraction of organic matter (humus) | % |
6 | pH | pH (in KCl) of soil solution | pH units |
7 | Clay content | Physical clay fraction (0.001 mm, silt) | % |
8 | Sand content | Physical sand fraction percentage (0.05–0.25 mm fine sand) | % |
9 | Sample name | Name of the standard sample from the database with measured values for comparing the data of the studied soil |
RA | T2 | T3 | D250 | Humus | pH | Clay | Sand | Sample Name |
---|---|---|---|---|---|---|---|---|
108.79 | 90.78 | 78.55 | 0.25 | 0.38 | 8 | 6.7 | 90.4 | sand |
101.09 | 102.81 | 86.81 | 0.16 | 0.33 | 7.9 | 5.9 | 85.4 | sand |
101.09 | 98.46 | 71.99 | 0.25 | 0.31 | 8 | 6.3 | 88.7 | sand |
104.95 | 101.59 | 71.93 | 0.48 | 0.55 | 5.3 | 8.5 | 81.7 | light loam |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kratasyuk, V.A.; Kolosova, E.M.; Sutormin, O.S.; Lonshakova-Mukina, V.I.; Baygin, M.M.; Rimatskaya, N.V.; Sukovataya, I.E.; Shpedt, A.A. Software for Matching Standard Activity Enzyme Biosensors for Soil Pollution Analysis. Sensors 2021, 21, 1017. https://doi.org/10.3390/s21031017
Kratasyuk VA, Kolosova EM, Sutormin OS, Lonshakova-Mukina VI, Baygin MM, Rimatskaya NV, Sukovataya IE, Shpedt AA. Software for Matching Standard Activity Enzyme Biosensors for Soil Pollution Analysis. Sensors. 2021; 21(3):1017. https://doi.org/10.3390/s21031017
Chicago/Turabian StyleKratasyuk, Valentina A., Elizaveta M. Kolosova, Oleg S. Sutormin, Viktoriya I. Lonshakova-Mukina, Matvey M. Baygin, Nadezhda V. Rimatskaya, Irina E. Sukovataya, and Alexander A. Shpedt. 2021. "Software for Matching Standard Activity Enzyme Biosensors for Soil Pollution Analysis" Sensors 21, no. 3: 1017. https://doi.org/10.3390/s21031017
APA StyleKratasyuk, V. A., Kolosova, E. M., Sutormin, O. S., Lonshakova-Mukina, V. I., Baygin, M. M., Rimatskaya, N. V., Sukovataya, I. E., & Shpedt, A. A. (2021). Software for Matching Standard Activity Enzyme Biosensors for Soil Pollution Analysis. Sensors, 21(3), 1017. https://doi.org/10.3390/s21031017