Using a Portable Gait Rhythmogram to Examine the Effect of Music Therapy on Parkinson’s Disease-Related Gait Disturbance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Gait Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mico-Amigo, M.E.; Kingma, I.; Faber, G.S.; Kunikoshi, A.; Van Uem, J.M.T.; Van Lummel, R.C.; Maetzler, W.; Van Dieën, J.H. Is the assessment of 5 meters of gait with a single body-fixed-sensor enough to recognize idiopathic Parkinson’s disease-associated gait? Ann. Biomed. Eng. 2017, 45, 1266–1278. [Google Scholar] [CrossRef] [Green Version]
- Ashoori, A.; Eagleman, D.M.; Jankovic, J. Effects of auditory rhythm and music on gait disturbances in Parkinson’s disease. Front. Neurol. 2015, 6, 234. [Google Scholar] [CrossRef] [Green Version]
- Lim, I.; Van Wegan, E.; De Goede, C.; Deutekom, M.; Nieuwboer, A.; Willems, A.; Jones, D.; Rochester, L.; Kwakkel, G. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: A systematic review. Clin. Rehabil. 2005, 19, 695–713. [Google Scholar] [CrossRef] [PubMed]
- Ito, N.; Hayashi, A.; Lin, W.; Ohkoshi, N.; Watanabe, M.; Shoji, S. Music therapy in Parkinson’s disease: Improvement of parkinsonian gait and depression with rhythmic auditory stimulation. In Integrated Human Brain Science: Theory, Method Application (Music); Nakada, T., Ed.; Elsevier: New York, NY, USA, 2000; pp. 435–443. [Google Scholar]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- Pistacchi, M.; Gioulis, M.; Sanson, F.; De Giovannini, E.; Filippi, G.; Rossetto, F.; Marsala, S.Z. Gait analysis and clinical correlations in early Parkinson’s disease. Funct. Neurol. 2017, 32, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, D.M.; Morris, M.E.; Iansek, R. Gait consistency over a 7-day interval in people with Parkinson’s disease. Arch. Phys. Med. Rehabil. 1999, 80, 696–701. [Google Scholar] [CrossRef]
- Djaldetti, R.; Lorberboym, M.; Melamed, E. Primary postural instability: A cause of recurrent sudden falls in the elderly. Neurol. Sci. 2006, 27, 412–416. [Google Scholar] [CrossRef]
- Agosti, V.; Vitale, C.; Avella, D.; Rucco, R.; Santangelo, G.; Sorrentino, P.; Varriale, P.; Sorrentino, G. Effects of global postural reeducation on gait kinematics in parkinsonian patients: A pilot randomized three-dimensional motion analysis study. Neurol. Sci. 2016, 37, 515–522. [Google Scholar] [CrossRef]
- Mancini, M.; Fling, B.W.; Gendreau, A.; Lapidus, J.; Horak, F.B.; Chung, K.; Nutt, J.G. Effect of augmenting cholinergic function on gait and balance. BMC Neurol. 2015, 15, 264. [Google Scholar] [CrossRef] [Green Version]
- Bloem, B.R.; De Vries, N.M.; Ebersbach, G. Nonpharmacological treatments for Parkinson’s disease. Mov. Disord. 2015, 30, 1504–1520. [Google Scholar] [CrossRef]
- Fox, S.H.; Katzenschlager, R.; Lim, S.Y.; Ravina, B.; Seppi, K.; Coelho, M.; Poewe, W.; Rascol, O.; Goetz, C.G.; Sampaio, C. The movement disorder society evidence-based medicine review update: Treatments for the motor symptoms of Parkinson’s disease. Mov. Disord. 2011, 26, S2–S41. [Google Scholar] [CrossRef] [PubMed]
- De Dreu, M.J.; Van der Wilk, A.S.D.; Poppe, E.; Kwakkel, G.; Wegen, E.E.H. Rehabilitation, exercise therapy and music in patients with Parkinson’s disease: A meta-analysis of the effects of music-based movement therapy on walking ability, balance and quality of life. Parkinsonism Relat. Disord. 2012, 18, S114–S119. [Google Scholar] [CrossRef]
- Freeman, J.S.; Cody, F.W.; Schady, W. The influence of external timing cues upon the rhythm of voluntary movements in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1993, 56, 1078–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, G.C.; Brown, S.H.; Rice, R.R.; Thaut, M.H. Rhythmic auditory-motor facilitation of gait patterns with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1997, 62, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Gomi, M.; Maezawa, K.; Nozawa, M.; Yuasa, T.; Sugimoto, M.; Hayashi, A.; Mikawa, S.; Kaneko, K. Early clinical evaluation of total hip arthroplasty by three-dimensional gait analysis and muscle strength testing. Gait Posture 2018, 66, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Di Biase, L.; Di Santo, A.; Caminiti, M.L.; De Liso, A.; Shah, S.A.; Ricci, L.; Di Lazzaro, V. Gait analysis in Parkinson’s disease: An overview of the most accurate markers for diagnosis and symptoms monitoring. Sensors 2020, 20, 3529. [Google Scholar] [CrossRef] [PubMed]
- Mc Dermott, A. Science and Culture: At the nexus of music and medicine, some see treatments for disease. Proc. Natl. Acad. Sci. USA 2021, 118, e2025750118. [Google Scholar] [CrossRef]
- Mitoma, H.; Yoneyama, M.; Orimo, S. 24-hour recording of Parkinsonian gait using a portable gait rhythmogram. Intern. Med. 2010, 49, 2401–2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitoma, H.; Yoneyama, M. A newly developed wearable device for continuous measurement of gait-induced accelerations in daily activities. Brain Disord. Ther. 2014, 3, 4172. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Maezawa, K.; Gomi, M.; Kajihara, H.; Hayashi, A.; Maruyama, Y.; Nozawa, M.; Kaneko, K. Effect of femoral offset and limb length discrepancy on hip joint muscle strength and gait trajectory after total hip arthroplasty. Gait Posture 2020, 77, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, M.; Mitoma, H.; Hayashi, A. Effect of age, gender, and walkway length on accelerometry-based gait parameters for healthy adult subjects. J. Mech. Med. Biol. 2016, 16, 1650029. [Google Scholar] [CrossRef]
- Hayashi, A.; Shimura, H.; Aiba, S.; Yoneyama, M.; Mitoma, H. Automatic detection of freezing index of Parkinson’s disease using a portable gait rhythmogram. J. Neurol. Sci. 2013, 333, 97–98. [Google Scholar] [CrossRef]
- De la Herran, A.M.; Zapirain, B.G.; Zorrilla, A.M. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [Green Version]
- Boso, M.; Politi, P.; Barale, F.; Emanuele, E. Neurophysiology and neurobiology of the musical experience. Funct. Neurol. 2006, 21, 187–191. [Google Scholar] [PubMed]
- Menon, V.; Levitin, D.J. The rewards of music listening: Response and physiological connectivity of the mesolimbic system. Neuroimage 2005, 28, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Salimpoor, V.N.; Benovoy, M.; Larcher, K.; Dagher, A.; Zatorre, R.J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 2011, 14, 257–262. [Google Scholar] [CrossRef]
- Aguiar, L.P.C.; Rocha, P.A.; Morris, M. Therapeutic dancing for Parkinson’s disease. Int. J. Gerontol. 2016, 10, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.P.S.; Marinho, V.; Gupta, D.; Magalhaes, F.; Ayres, C.; Teixeira, S. Music therapy and dance as gait rehabilitation in patients with Parkinson disease: A review of evidence. J. Geriatr. Psychiatry Neurol. 2019, 32, 49–56. [Google Scholar] [CrossRef]
- Achey, M.; Aldred, J.L.; Aljehani, N.; Bloem, B.R.; Biglan, K.M.; Chan, P.; Cubo, E.; Dorsey, E.R.; Goetz, C.G.; Guttman, M.; et al. The past, present, and future of telemedicine for Parkinson’s disease. Mov. Disord. 2014, 29, 871–883. [Google Scholar] [CrossRef]
- Howell, S.; Tripoliti, E.; Pring, T. Delivering the Lee Silverman Voice Treatment (LSVT) by web camera: A feasibility study. Int. J. Lang. Commun. Disord. 2009, 44, 287–300. [Google Scholar] [CrossRef]
Pre-MT | Post-MT | |
---|---|---|
Acceleration (m/s2) | 1.94 ± 0.56 | 2.44 ± 0.73 ** |
Speed (m/s) | 0.88 ± 0.22 | 0.97 ± 0.22 ** |
Cadence (steps/min) | 117.3 ± 17.74 | 122.9 ± 15.56 * |
Step length (cm) | 41.55 ± 8.38 | 46.70 ± 8.39 ** |
Acceleration (m/s2) | Amplitude (cm) | |||
---|---|---|---|---|
Pre-MT | Post-MT | Pre-MT | Post-MT | |
Total | 1.94 ± 0.56 | 2.44 ± 0.73 | - | |
ML | 0.96 ± 0.22 | 1.13 ± 0.27 | 1.88 ± 0.98 | 1.71 ± 0.84 |
VT | 1.96 ± 0.39 | 1.57 ± 0.47 | 1.07 ± 0.30 | 1.19 ± 0.36 |
AP | 1.10 ± 0.31 | 1.15 ± 0.41 | 1.07 ± 0.99 | 1.23 ± 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gondo, E.; Mikawa, S.; Hayashi, A. Using a Portable Gait Rhythmogram to Examine the Effect of Music Therapy on Parkinson’s Disease-Related Gait Disturbance. Sensors 2021, 21, 8321. https://doi.org/10.3390/s21248321
Gondo E, Mikawa S, Hayashi A. Using a Portable Gait Rhythmogram to Examine the Effect of Music Therapy on Parkinson’s Disease-Related Gait Disturbance. Sensors. 2021; 21(24):8321. https://doi.org/10.3390/s21248321
Chicago/Turabian StyleGondo, Emiri, Saiko Mikawa, and Akito Hayashi. 2021. "Using a Portable Gait Rhythmogram to Examine the Effect of Music Therapy on Parkinson’s Disease-Related Gait Disturbance" Sensors 21, no. 24: 8321. https://doi.org/10.3390/s21248321
APA StyleGondo, E., Mikawa, S., & Hayashi, A. (2021). Using a Portable Gait Rhythmogram to Examine the Effect of Music Therapy on Parkinson’s Disease-Related Gait Disturbance. Sensors, 21(24), 8321. https://doi.org/10.3390/s21248321