Passive Homodyne Phase Demodulation Technique Based on LF-TIT-DCM Algorithm for Interferometric Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algorithm Principle
2.2. Dual Wavelength Demodulation System
3. Results and Discussion
3.1. Acoustic Signal Testing System
3.2. Small Signal and Large Signal Response
3.3. Dynamic Range and Comparison
3.4. Optical Power Response
3.5. Wavelength Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, J.; Zhang, T.; Wang, S.; Liu, K.; Li, C.; Zhao, Z.; Liu, T. Noncontact Ultrasonic Detection in Low-Pressure Carbon Dioxide Medium Using High Sensitivity Fiber-Optic Fabry–Perot Sensor System. J. Lightw. Technol. 2017, 35, 5079–5085. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, S.; Jiang, J.; Liu, K.; Zhang, X.; Zhang, P.; Liu, T. Orthogonal Phase Demodulation of Optical Fiber Fabry-Perot Interferometer Based on Birefringent Crystals and Polarization Technology. IEEE Photonics J. 2020, 12, 7101209. [Google Scholar] [CrossRef]
- Acharya, A.; Kawade, N. A Fabry–Perot Interferometer-Based Fiber Optic Dynamic Displacement Sensor With an Analog in-Phase/Quadrature Generator. IEEE Sens. J. 2020, 20, 14764–14771. [Google Scholar] [CrossRef]
- Liu, Q.; Jing, Z.; Liu, Y.; Li, A.; Xia, Z.; Peng, W. Absolute Measurement of Dynamic Low-Finesse Fabry-Perot Cavity Using Phase-Shifting White-Light Interferometry. J. Lightw. Technol. 2020, 30, 3926–3931. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, B.; Winder, D. Faraday Michelson interferometers for signal demodulation of fiber-optic sensors. J. Lightw. Technol. 2021, 39, 2552–2558. [Google Scholar] [CrossRef]
- Wang, F.; Xie, J.; Hu, Z.; Xiong, S.; Luo, H.; Hu, Y. Interrogation of Extrinsic Fabry–Perot Sensors Using Path-Matched Differential Interferometry and Phase Generated Carrier Technique. J. Lightw. Technol. 2015, 33, 2392–2397. [Google Scholar] [CrossRef]
- Sun, M.; Jin, Y.; Dong, X. All-Fiber Mach–Zehnder Interferometer for Liquid Level Measurement. IEEE Sens. J. 2015, 15, 3984–3988. [Google Scholar] [CrossRef]
- Gong, H.; Chan, C.C.; Chen, L.; Dong, X. Strain Sensor Realized by Using Low-Birefringence Photonic-Crystal-Fiber-Based Sagnac Loop. IEEE Photonics Technol. Lett. 2010, 22, 1238–1240. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, A. Fast Demodulation Algorithm for Multiplexed Low-Finesse Fabry–Pérot Interferometers. J. Lightw. Technol. 2016, 34, 1015–1019. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, Z. Feedback-stabilized interrogation technique for optical Fabry–Perot acoustic sensor using a tunable fiber laser. Opt. Laser Technol. 2013, 51, 43–46. [Google Scholar] [CrossRef]
- Mao, X.; Zhou, X.; Yu, Q. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors. Opt. Commun. 2016, 361, 17–20. [Google Scholar] [CrossRef]
- Chen, J.; Li, W.; Jiang, H.; Li, Z. Stabilization of a fiber Fabry–Perot interferometric acoustic wave sensor. Optik 2013, 124, 339–342. [Google Scholar] [CrossRef]
- Liu, L.; Lu, P.; Liao, H.; Wang, S.; Yang, W.; Liu, D.; Zhang, J. Fiber-Optic Michelson Interferometric Acoustic Sensor Based on a PP/PET Diaphragm. IEEE Sens. J. 2016, 16, 3054–3058. [Google Scholar] [CrossRef]
- Jia, J.; Jiang, Y.; Zhang, L.; Gao, H.; Jiang, L. Symbiosis-Michelson Interferometer-Based Detection Scheme for the Measurement of Dynamic Signals. IEEE Sens. J. 2019, 19, 7988–7992. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, A.; Pan, H. Eliminating Light Intensity Disturbance With Reference Compensation in Interferometers. IEEE Photonics Technol. Lett. 2015, 27, 1888–1891. [Google Scholar] [CrossRef]
- Liu, B.; Lin, J.; Liu, H.; Ma, Y.; Yan, L.; Jin, P. Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier. Opt. Commun. 2017, 382, 514–518. [Google Scholar] [CrossRef]
- Wang, X.; Piao, S.; Fu, J.; Li, X. Automatic carrier signal track algorithm in all-digital PGC demodulation scheme for optical interferometric sensors. J. Opt. Technol. 2017, 84, 265–269. [Google Scholar] [CrossRef]
- Efimov, M.E.; Plotnikov, M.Y.; Kulikov, A.V.; Mekhrengin, M.V.; Kireenkov, A.Y. Fiber-Optic Interferometric Sensor Based on the Self-Interference Pulse Interrogation Approach for Acoustic Emission Sensing in the Graphite/Epoxy Composite. IEEE Sens. J. 2019, 19, 7861–7867. [Google Scholar] [CrossRef]
- Furstenau, N.; Schmidt, M. Interferometer vibration sensor with two-wavelength passive quadrature readout. IEEE Trans. Instrum. Meas. 1998, 47, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Xiong, S.; Wang, F.; Luo, H. Wavelength-switched phase interrogator for extrinsic Fabry–Perot interferometric sensors. Opt. Lett. 2016, 41, 2082–3085. [Google Scholar] [CrossRef]
- Liao, H.; Lu, P.; Liu, L.; Wang, S.; Ni, W.; Fu, X.; Liu, D.; Zhang, J. Phase Demodulation of Short-Cavity Fabry–Perot Interferometric Acoustic Sensors with Two Wavelengths. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Liu, Q.; Jing, Z.; Li, A.; Liu, Y.; Huang, Z.; Zhang, Y.; Peng, W. Common-path dual-wavelength quadrature phase demodulation of EFPI sensors using a broadly tunable MG-Y laser. Opt. Express 2019, 27, 27873–27881. [Google Scholar] [CrossRef]
- Wang Joo, L.; Bong Kyu, K.; Ki Ho, H.; Byoung Yoon, K. Dual heterodyne polarization diversity demodulation for fiber-optic interferometers. IEEE Photonics Technol. Lett. 1999, 11, 1156–1158. [Google Scholar] [CrossRef]
- Xue, N.; Fu, Y.; Lu, C.; Xiong, J.; Yang, L.; Wang, Z. Characterization and Compensation of Phase Offset in Φ-OTDR With Heterodyne Detection. J. Lightw. Technol. 2018, 36, 5481–5487. [Google Scholar] [CrossRef]
- Tu, X.; Sun, Q.; Chen, W.; Chen, M.; Meng, Z. Vector Brillouin Optical Time-Domain Analysis With Heterodyne Detection and IQ Demodulation Algorithm. IEEE Photonics J. 2014, 6, 6800908. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, A. Fast White Light Interferometry Demodulation Algorithm for Low-Finesse Fabry–Pérot Sensors. IEEE Photonics Technol. Lett. 2015, 27, 817–820. [Google Scholar] [CrossRef]
- Fu, X.; Lu, P.; Ni, W.; Liao, H.; Jiang, X.; Liu, D.; Zhang, J. Phase Interrogation of Diaphragm-Based Optical Fiber Acoustic Sensor Assisted by Wavelength-Scanned Spectral Coding. IEEE Photonics J. 2018, 10, 7102811. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Jin, R.; Feng, M.; Wu, S.; Zhang, L.; Lu, P. All-Optical Demodulation Fiber Acoustic Sensor With Real-Time Controllable Sensitivity Based on Optical Vernier Effect. IEEE Photonics J. 2019, 11, 6801911. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Lu, P.; Qu, Z.; Zhang, J.; Wu, Q.; Liu, D. Passive Homodyne Phase Demodulation Technique Based on LF-TIT-DCM Algorithm for Interferometric Sensors. Sensors 2021, 21, 8257. https://doi.org/10.3390/s21248257
Zhang W, Lu P, Qu Z, Zhang J, Wu Q, Liu D. Passive Homodyne Phase Demodulation Technique Based on LF-TIT-DCM Algorithm for Interferometric Sensors. Sensors. 2021; 21(24):8257. https://doi.org/10.3390/s21248257
Chicago/Turabian StyleZhang, Wanjin, Ping Lu, Zhiyuan Qu, Jiangshan Zhang, Qiang Wu, and Deming Liu. 2021. "Passive Homodyne Phase Demodulation Technique Based on LF-TIT-DCM Algorithm for Interferometric Sensors" Sensors 21, no. 24: 8257. https://doi.org/10.3390/s21248257
APA StyleZhang, W., Lu, P., Qu, Z., Zhang, J., Wu, Q., & Liu, D. (2021). Passive Homodyne Phase Demodulation Technique Based on LF-TIT-DCM Algorithm for Interferometric Sensors. Sensors, 21(24), 8257. https://doi.org/10.3390/s21248257