Sea Surface Temperature Analysis for Fengyun-3C Data Using Oriented Elliptic Correlation Scales
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Oriented Elliptic Correlation Scale
2.2.2. Estimation of SST Observation Error
2.2.3. Estimation of SST Background Error
3. Results
3.1. Comparison of 2016 SST Analysis Results
3.2. Validation of Two Sets of Daily SST Analysis Results
4. Discussion
4.1. Error Analysis for SST Analysis Methods
4.2. Error Analysis for SST Observations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, A. Evaluation of Indian Summer Monsoon Rainfall Using the NCEP Global Model: An SST Impact Study. Pure Appl. Geophys. 2019, 176, 3697–3715. [Google Scholar] [CrossRef]
- Barnett, T.P.; Graham, N.; Pazan, S.; White, W.; Latif, M.; Flügel, M. ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model. J. Clim. 1993, 6, 1545–1566. [Google Scholar] [CrossRef] [Green Version]
- Brasnett, B. A global analysis of sea surface temperature for numerical weather prediction. J. Atmos. Ocean. Technol. 1997, 14, 925–937. [Google Scholar] [CrossRef]
- Ruela, R.; Sousa, M.C.; de Castro, M.; Dias, J.M. Global and regional evolution of sea surface temperature under climate change. Glob. Planet. Chang. 2020, 190, 103190. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Sun, C.; Lin, X.; Liu, H.; Wang, L.; Liang, Y.; Wang, Q.; Zhang, Y.; Hou, Z.; et al. Contribution of SST change to multidecadal global and continental surface air temperature trends between 1910 and 2013. Clim. Dyn. 2020, 54, 1295–1313. [Google Scholar] [CrossRef] [Green Version]
- Banzon, V.F.; Reynolds, R.W.; Stokes, D.; Xue, Y. A 1/4°-Spatial-Resolution Daily Sea Surface Temperature Climatology Based on a Blended Satellite and in situ Analysis. J. Clim. 2014, 27, 8221–8228. [Google Scholar] [CrossRef]
- Martin, M.; Dash, P.; Ignatov, A.; Banzon, V.; Beggs, H.; Brasnett, B.; Cayula, J.F.; Cummings, J.; Donlon, C.; Gentemann, C.; et al. Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE). Deep. Sea Res. Part II Top. Stud. Oceanogr. 2012, 77–80, 21–30. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Park, K.A.; Chung, J.Y. Spatial and temporal scale variations of sea surface temperature in the East Sea using NOAA/AVHRR data. J. Oceanogr. 1999, 55, 271–288. [Google Scholar] [CrossRef]
- Gohin, F.; Langlois, G. Using geostatistics to merge in situ measurements and remotely-sensed observations of sea surface temperature. Int. J. Remote Sens. 1993, 14, 9–19. [Google Scholar] [CrossRef]
- Doney, S.C.; Glover, D.M.; McCue, S.J.; Fuentes, M. Mesoscale variability of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite ocean color: Global patterns and spatial scales. J. Geophys. Res. Ocean. 2003, 108, 3024–3038. [Google Scholar] [CrossRef]
- Liao, Z.; Xu, B.; Zhang, L.; Gu, J.; Shi, C. Optimum interpolation analysis for Fengyun-3C sea surface temperature data using oriented elliptic correlation scales. Remote Sens. Lett. 2021, 12, 585–593. [Google Scholar] [CrossRef]
- Tandeo, P.; Autret, E.; Chapron, B.; Fablet, R.; Garello, R. SST spatial anisotropic covariances from METOP-AVHRR data. Remote Sens. Environ. 2014, 141, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Xu, L.; Xu, Y.; Wang, J. SST fusion analysis based on Kalman Filter and Spatiotemporal dimension. In Proceedings of the Fifth International Conference on Machine Vision (ICMV 12); SPIE: Bellingham, WA, USA, 2013; Volume 8783. [Google Scholar]
- Reynolds, R.W.; Chelton, D.B. Comparisons of Daily Sea Surface Temperature Analyses for 2007–08. J. Clim. 2010, 23, 3545–3562. [Google Scholar] [CrossRef] [Green Version]
- Alaka, M.A.; Elvander, R.C. Optimum interpolation from observations of mixed quality. Mon. Weather Rev. 1972, 100, 12–624. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Wentz, F.J.; DeMaria, M. Near real time global optimum interpolated microwave SSTs: Applications to hurricane intensity forecasting. In Proceedings of the 27th Conference on Hurricanes and Tropical Meteorology, Monterey, CA, USA, 24–26 April 2006. [Google Scholar]
- Reynolds, R.W.; Smith, T.M. Improved global sea surface temperature analyses using optimum interpolation. J. Clim. 1994, 7, 929–948. [Google Scholar] [CrossRef] [Green Version]
- Tanimoto, Y.; Hanawa, K.; Toba, Y.; Iwasaka, N. Characteristic Variations of Sea Surface Temperature with Multiple Time Scales in the North Pacific. J. Clim. 1993, 6, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Trishchenko, A.P.; Cihlar, J.; Li, Z. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens. Environ. 2002, 81, 1–18. [Google Scholar] [CrossRef]
- Yan, Y.; Barth, A.; Beckers, J.M.; Candille, G.; Brankart, J.M.; Brasseur, P. Comparison of different assimilation schemes in an operational assimilation system with Ensemble Kalman Filter. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Kalman, R.E.; Bucy, R.S. New Results in Linear Filtering and Prediction Theory. J. Basic Eng. 1961, 83, 95–108. [Google Scholar] [CrossRef]
- Tang, Y.Q.; Zhang, J.S.; Wang, J.S. FY-3 Meteorological Satellites and the Applications. Space Sci. Act. China 2014, 34, 703–709. [Google Scholar]
- Wang, S.; Cui, P.; Zhang, P.; Ran, M.; Lu, F.; Wang, W. FY-3C/VIRR SST algorithm and cal/val activities at NSMC/CMA. In SPIE Asia Pacific Remote Sensing; International Society for Optics and Photonics: Beijing, China, 2014. [Google Scholar]
- Yang, Z.; Lu, N.; Shi, J.; Zhang, P.; Dong, C.; Yang, J. Overview of FY-3 payload and ground application system. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4846–4853. [Google Scholar] [CrossRef]
- Liao, Z.; Dong, Q.; Xue, C. A Bias Correction Method for FY-3C VIRR SST Data. Remote Sens. Lett. 2017, 8, 429–437. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. In situ SST quality monitor (i quam). J. Atmos. Ocean. Technol. 2014, 31, 164–180. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. Error characterization in iQuam SSTs using triple collocations with satellite measurements. Geophys. Res. Lett. 2016, 43, 10826–10834. [Google Scholar] [CrossRef]
- Dash, P.; Ignatov, A.; Martin, M.; Donlon, C.; Brasnett, B.; Reynolds, R.W.; Banzon, V.; Beggs, H.; Cayula, J.F.; Chao, Y.; et al. Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields inter-comparisons—Part 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM). Deep. Sea Res. Part II Top. Stud. Oceanogr. 2012, 77, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Petrenko, B.; Ignatov, A.; Kihai, Y.; Dash, P. Sensor-specific error statistics for SST in the Advanced Clear-Sky Processor for Oceans. J. Atmos. Ocean. Technol. 2016, 33, 345–359. [Google Scholar] [CrossRef]
- Wang, H.; Guan, L.; Chen, G. Evaluation of Sea Surface Temperature From FY-3C VIRR Data in the Arctic. IEEE Geosci. Remote Sens. Lett. 2016, 13, 292–296. [Google Scholar] [CrossRef]
- McClain, E.P.; Pichel, W.G.; Walton, C.C. Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res. Ocean. 1985, 90, 11587–11601. [Google Scholar] [CrossRef]
- Liao, Z.; Dong, Q.; Xue, C. Evaluation of sea surface temperature from FY-3C data. Int. J. Remote Sens. 2017, 38, 4954–4973. [Google Scholar] [CrossRef]
- Pryamitsyn, V.; Ignatov, A.; Petrenko, B.; Jonasson, O.; Kihai, Y. Evaluation of the initial NOAA AVHRR GAC SST reanalysis version 2 (RAN2 B01). In SPIE Defense + Commercial Sensing; SPIE: Bellingham, WA, USA, 2020; Volume 11420. [Google Scholar]
RMSE (°C) | SD (°C) | R | SNR | NUM | |
---|---|---|---|---|---|
OI | 0.3911 | 0.2539 | 0.9989 | 22.41 | 82,441 |
Kalman | 0.3243 | 0.2214 | 0.9993 | 26.64 | 82,441 |
OISST | 0.2897 | 0.2140 | 0.9994 | 29.31 | 82,441 |
1 May | 1 October | |||||||
---|---|---|---|---|---|---|---|---|
R | SST SD | ubRMSE | NUM | R | SST SD | ubRMSE | NUM | |
In situ | 1 | 8.7775 | 0 | 268 | 1 | 8.3529 | 0 | 260 |
OI | 0.9985 | 8.7005 | 0.4779 | 268 | 0.9989 | 8.3659 | 0.3986 | 260 |
Kalman | 0.9990 | 8.7576 | 0.4001 | 268 | 0.9993 | 8.3719 | 0.3207 | 260 |
OISST | 0.9992 | 8.7452 | 0.3413 | 268 | 0.9992 | 8.2884 | 0.3302 | 260 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Xu, B.; Gu, J.; Shi, C. Sea Surface Temperature Analysis for Fengyun-3C Data Using Oriented Elliptic Correlation Scales. Sensors 2021, 21, 8067. https://doi.org/10.3390/s21238067
Liao Z, Xu B, Gu J, Shi C. Sea Surface Temperature Analysis for Fengyun-3C Data Using Oriented Elliptic Correlation Scales. Sensors. 2021; 21(23):8067. https://doi.org/10.3390/s21238067
Chicago/Turabian StyleLiao, Zhihong, Bin Xu, Junxia Gu, and Chunxiang Shi. 2021. "Sea Surface Temperature Analysis for Fengyun-3C Data Using Oriented Elliptic Correlation Scales" Sensors 21, no. 23: 8067. https://doi.org/10.3390/s21238067
APA StyleLiao, Z., Xu, B., Gu, J., & Shi, C. (2021). Sea Surface Temperature Analysis for Fengyun-3C Data Using Oriented Elliptic Correlation Scales. Sensors, 21(23), 8067. https://doi.org/10.3390/s21238067