Research on Lightweight Citrus Flowering Rate Statistical Model Combined with Anchor Frame Clustering Optimization
Abstract
:1. Introduction
- We modified the backbone network of YOLOv4 to MobileNetv3 and applied the deep separable convolution method to the neck network, which greatly reduced the number of parameters, and the feasibility of this method was also proved in the ablation experiment.
- The improved YOLOv4 performed well in terms of citrus flowering statistics, and the real-time detection speed reached 11.3FPS, which meets the needs of practical applications.
2. Materials and Methods
2.1. Data Collection and Preprocessing
2.2. Data Enhancement
2.3. K-Means Border Clustering
2.4. Lightweight YOLOv4 Model
3. Experiments and Results
3.1. Experimental Environment Setting
3.2. Model Evaluation
3.3. Ablation Experiment
3.4. Analysis of Training Loss and mAP
3.5. Comparison of Four Models
3.6. Testing Results under Different Citrus Flower Densities
3.7. Testing Results under Different Environments
4. Discussion and Conclusions
4.1. Discussion
4.2. Conclusions
- (1)
- The improved YOLOv4 can maintain the detection performance of the original YOLOv4. In the case of sparse and medium citrus flowers, mAP can reach 95.5% and 88.1%, the number of weights is compressed by four times, and the detection speed is increased by 87%, indicating that the improved YOLOv4 can adapt to different scenarios and has high robustness.
- (2)
- The deployment experiment shows that the speed of video stream detection on Nvidia Jetson AGX Xavier reached 11.3 FPS, indicating that the improved YOLOv4 has a smaller overhead. Compared with YOLOv4-tiny, the proposed method can also satisfy the practical requirement, while its mAP was 20.42% higher than the YOLOv4-tiny algorithm.
Author Contributions
Funding
Conflicts of Interest
References
- Gao, Z.; Li, S.B.; Chen, J.N.; Li, Z. Pedestrian detection method based on yolo network. Comput. Eng. 2018, 44, 215–219. [Google Scholar]
- Wang, Y.N.; Pang, Z.H.; Yuan, D.M. Real-time vehicle detection based on yolo algorithm. J. Wuhan Univ. Technol. 2016, 38, 41–46. [Google Scholar]
- Xu, Y.; Li, R.; Zhou, J.; Zheng, Y.; Ke, Q.; Zhi, Y.; Guan, H.; Wu, X.; Zhai, Y. Communication Base-Station Antenna Detection Algorithm Based on YOLOv3-Darknet Network. In International Conference on Intelligent and Interactive Systems and Applications; Springer: Cham, Switzerland, 2019; pp. 664–668. [Google Scholar]
- Zhao, D.A.; Wu, R.D.; Liu, X.Y.; Zhao, Y. Robot picking apple positioning based on yolo deep convolu-tional neural network under complex background. Trans. Chin. Soc. Agric. Eng. 2019, 35, 172–181. [Google Scholar]
- Guan, Y. Flower recognition system based on residual network migration learning. J. Comput. Eng. Appl. 2019, 55, 174–179. [Google Scholar]
- Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Anwar, S. Deep learning-based identification system of weeds and crops in strawberry and pea fields for a precision agriculture sprayer. Precis. Agric. 2021, 22, 1711–1727. [Google Scholar] [CrossRef]
- Yang, J.Y.; Li, J.X.; Wang, Z.Y.; Cheng, H. Recognition of Flower Varieties Based on Convolutional Neural Network. Eng. J. Heilongjiang Univ. 2019, 10, 90–96. [Google Scholar]
- Liu, J.; Wang, X. Correction to: Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model. Plant Methods 2021, 17, 1. [Google Scholar] [CrossRef]
- Wang, M.; Chen, R.; Ran, L.Z.; Yang, X.; Zhang, X.R.; Yao, J.T.; Luo, Y.S.; Ai, M. Identification Method of Citrus Red Spider Pests Based on Deep Learning. CN112597907A, 2 April 2021. [Google Scholar]
- Wang, X. Research on Image Segmentation of Multi-Variety Fruits and Flowers Based on Deep Learning. Master’s Thesis, Wuhan University of Light Industry, Wuhan, China, 2020. [Google Scholar]
- Deng, Y.; Wu, H.R.; Zhu, H.J. Citrus flower identification and flower volume statistics based on instance segmentation. Trans. Chin. Soc. Agric. Eng. 2020, 36, 200–207. [Google Scholar]
- Wang, K.; Liu, M. YOLOv3-MT: A YOLOv3 using multi-target tracking for vehicle visual detection. Appl. Intell. 2021, 1–22. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, 1st ed.; IEEE: New York, NY, USA, 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. arXiv 2016, arXiv:1612.08242. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-J.M. YOLOv4 Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Liu, Y.; Wang, J.; Li, J.; Niu, S.; Wu, L.; Song, H. Zero-bias Deep Learning Enabled Quickest Abnormal Event Detection in IoT. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, G.; Ma, S.J.P.C. Product-oriented Product Service System for Large-scale Vision In-spection. Procedia CIRP 2019, 83, 675–679. [Google Scholar] [CrossRef]
- Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images. Remote Sens. 2016, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; He, N.; Zhang, J.; Li, Y.; Wang, Q.; Sack, L.; Yu, G. Variation of stomatal traits from cold tem-perate to tropical forests and association with water use efficiency. Funct. Ecol. 2018, 32, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Shen, S.; Dong, Z.; Ye, J.; Ma, L.; Yao, Z.; Gholami, A.; Mahoney, M.W.; Keutzer, K. Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. In Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI), Palo Alto, CA, USA, 3 April 2020; Volume 34, pp. 8815–8821. [Google Scholar]
- Zafrir, O.; Boudoukh, G.; Izsak, P.; Wasserblat, M. Q8bert: Quantized 8bit bert. arXiv 2019, arXiv:1910.06188. [Google Scholar]
- Han, S.M.H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv 2015, arXiv:1510.00149. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture de-sign. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Tan, M.; Le, Q.V. Efficientnetv2: Smaller models and faster training. arXiv 2021, arXiv:2104.00298. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 1314–1324. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Qin, Z.; Li, Z.; Zhang, Z.; Bao, Y.; Yu, G.; Peng, Y.; Sun, J. ThunderNet: Towards real-time generic object detection on mobile devices. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 6718–6727. [Google Scholar]
- Pan, S.J.; Tsang, I.; Kwok, J.T.; Yang, Q. Domain Adaptation via Transfer Component Analysis. IEEE Trans. Neural Netw. 2010, 22, 199–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Jia, R.; Sun, H.; Liu, Q.; Cui, Z. Light-YOLOv3: Fast method for detecting green mangoes in complex scenes using picking robots. Appl. Intell. 2020, 50, 4670–4687. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965; Volume 1, pp. 281–297. [Google Scholar]
- Devries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017, arXiv:1708.04552. [Google Scholar]
- Liu, Y.; Chen, Y.; Wang, J.; Niu, S.; Liu, D.; Song, H. Zero-bias Deep Neural Network for Quickest RF Signal Surveillance. arXiv 2021, arXiv:2110.05797. [Google Scholar]
- Liu, Y.; Wang, J.; Li, J.; Niu, S.; Song, H. Machine learning for the detection and identification of internet of things (iot) devices: A survey. arXiv 2021, arXiv:2101.10181. [Google Scholar] [CrossRef]
- Tu, S.; Pang, J.; Liu, H.; Zhuang, N.; Chen, Y.; Zheng, C.; Wan, H.; Xue, Y. Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images. Precis. Agric. 2020, 21, 1072–1091. [Google Scholar] [CrossRef]
- Niu, S.; Jiang, Y.; Chen, B.; Wang, J.; Liu, Y.; Song, H. Cross-Modality Transfer Learning for Image-Text Information Management. ACM Trans. Manag. Inf. Syst. 2022, 13, 1–14. [Google Scholar] [CrossRef]
- Niu, S.; Liu, Y.; Wang, J.; Song, H. A decade survey of transfer learning (2010–2020). IEEE Trans. Artif. Intell. 2020, 1, 151–166. [Google Scholar] [CrossRef]
Network Model | Mean Average Precision/% | Parameter | Detection Speed/FPS | Weight/MB |
---|---|---|---|---|
YOLOv4 | 87.4 | 63,943,071 | 6.2 | 244 |
YOLOv4 + dw | 85.8 | 35,690,655 | 11.1 | 136 |
YOLOv4 + dw + tiny | 64.42 | 5,918,006 | 23.5 | 22.4 |
Improved YOLOv4 (YOLOv4 + dw + mobileNetv3) | 84.84 | 11,309,039 | 11.6 | 53.7 |
Network Model | Mean Average Precision/% | F1 Score/% | Detection Speed/FPS | Weight/MB |
---|---|---|---|---|
YOLOv4 | 87.4 | 87.0 | 6.2 | 244 |
Improved YOLOv4 | 84.84 | 81.0 | 11.6 | 53.7 |
YOLOv4-tiny | 64.42 | 61.0 | 23.5 | 22.4 |
Faster R-CNN | 90.27 | 91.0 | 2.3 | 108.0 |
Density | [email protected]/% Mean Average Precision | F1 Score/% |
---|---|---|
Few | 87.4 | 87.0 |
Middle | 84.84 | 81.0 |
Intensive | 64.42 | 61.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Lin, W.; Chen, P.; Lan, Y.; Deng, X.; Niu, H.; Mo, J.; Li, J.; Luo, S. Research on Lightweight Citrus Flowering Rate Statistical Model Combined with Anchor Frame Clustering Optimization. Sensors 2021, 21, 7929. https://doi.org/10.3390/s21237929
Lu J, Lin W, Chen P, Lan Y, Deng X, Niu H, Mo J, Li J, Luo S. Research on Lightweight Citrus Flowering Rate Statistical Model Combined with Anchor Frame Clustering Optimization. Sensors. 2021; 21(23):7929. https://doi.org/10.3390/s21237929
Chicago/Turabian StyleLu, Jianqiang, Weize Lin, Pingfu Chen, Yubin Lan, Xiaoling Deng, Hongyu Niu, Jiawei Mo, Jiaxing Li, and Shengfu Luo. 2021. "Research on Lightweight Citrus Flowering Rate Statistical Model Combined with Anchor Frame Clustering Optimization" Sensors 21, no. 23: 7929. https://doi.org/10.3390/s21237929
APA StyleLu, J., Lin, W., Chen, P., Lan, Y., Deng, X., Niu, H., Mo, J., Li, J., & Luo, S. (2021). Research on Lightweight Citrus Flowering Rate Statistical Model Combined with Anchor Frame Clustering Optimization. Sensors, 21(23), 7929. https://doi.org/10.3390/s21237929