A Dual-Band Wide-Input-Range Adaptive CMOS RF–DC Converter for Ambient RF Energy Harvesting
Abstract
:1. Introduction
2. Proposed Dual-Band RF–DC Converter
2.1. Adaptive RF–DC Converter Design
2.2. Adaptive Mode Control Circuit Design
2.3. Dual-Band Impedance-Matching Circuit Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Hsu, Y.P.; Fahs, B.; Hella, M.M. An RF-DC Converter IC With On-Chip Adaptive Impedance Matching and 307-µW Peak Output Power for Health Monitoring Applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1565–1574. [Google Scholar] [CrossRef]
- Xie, F.; Yang, G.M.; Geyi, W. Optimal Design of an Antenna Array for Energy Harvesting. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 155–158. [Google Scholar] [CrossRef]
- Hsieh, P.H.; Chou, C.H.; Chiang, T. An RF Energy Harvester With 44.1% PCE at Input Available Power of −12 dBm. IEEE Trans. Circuits Syst. I Reg. Pap. 2015, 62, 1528–1537. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Fahmy, G.A.; Abdel-Rahman, A.B.; Allam, A.; Barakat, A.; Abo-Zahhad, M.; Jia, H.; Pokharel, R.K. High-Efficiency CMOS RF-to-DC Rectifier Based on Dynamic Threshold Reduction Technique for Wireless Charging Applications. IEEE Access 2018, 6, 46826–46832. [Google Scholar] [CrossRef]
- Lu, Y.; Dai, H.; Huang, M.; Law, M.K.; Sin, S.W.; Seng-Pan, U.; Martins, R.P. A Wide Input Range Dual-Path CMOS Rectifier for RF Energy Harvesting. IEEE Trans. Circuits Syst. II Exp. Briefs 2012, 2, 24–33. [Google Scholar] [CrossRef]
- Nintanavongsa, P.; Muncuk, U.; Lewis, D.R.; Chowdhury, K.R. Design Optimization and Implementation for RF Energy Harvesting Circuits. IEEE J. Emerg. Sel. Top. Circuits Syst. 2012, 2, 24–33. [Google Scholar] [CrossRef]
- Ladan, S.; Ghassemi, N.; Giolitto, A.; Wu, K. Highly Efficient Compact Rectenna for Wireless Energy Harvesting Application. IEEE Microw. Mag. 2013, 14, 117–122. [Google Scholar] [CrossRef]
- Alam, S.B.; Ullah, M.S.; Moury, S. Design of A Low Power 2.45 GHz RF Energy Harvesting Circuit for Rectenna. In Proceedings of the 2013 International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 17–18 May 2013. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Liu, M.; Liu, H. A High Efficiency Rectifier for Ambient RF Energy Harvesting at 940 MHz. In Proceedings of the 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Beijing, China, 5–8 June 2016. [Google Scholar] [CrossRef]
- Piñuela, M.; Mitcheson, P.D.; Lucyszyn, S. Ambient RF Energy Harvesting in Urban and Semi-Urban Environments. IEEE Trans. Microw. Theory Techn. 2013, 61, 12–28. [Google Scholar] [CrossRef]
- Li, B.; Shao, X.; Shahshahan, N.; Goldsman, N.; Salter, T.; Metze, G.M. An Antenna Co-Design Dual Band RF Energy Harvester. IEEE Trans. Circuits Syst. I Reg. Pap. 2013, 60, 3256–3266. [Google Scholar] [CrossRef]
- Li, C.H.; Yu, M.C.; Lin, H.J. A Compact 0.9-/2.6-GHz Dual-Band RF Energy Harvester Using SiP Technique. IEEE Microw. Wirel. Compon. Lett. 2017, 25, 666–668. [Google Scholar] [CrossRef]
- Khan, D.; Oh, S.J.; Shehzad, K.; Verma, D.; Khan, Z.H.N.; Pu, Y.G.; Lee, M.; Hwang, K.C.; Yang, Y.; Lee, K.Y. A CMOS RF Energy Harvester with 47% Peak Efficiency Using Internal Threshold Voltage Compensation. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 415–417. [Google Scholar] [CrossRef]
- Noghabaei, S.M.; Radin, R.L.; Sawan, M. Efficient Dual-band Ultra-Low-Power RF Energy Harvesting Front-End for Wearable Devices. In Proceedings of the 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 5–8 August 2018. [Google Scholar] [CrossRef]
- Muncuk, U.; Alemdar, K.; Sarode, J.D.; Chowdhury, K.R. Multiband Ambient RF Energy Harvesting Circuit Design for Enabling Batteryless Sensors and IoT. IEEE Internet Things J. 2018, 5, 2700–2714. [Google Scholar] [CrossRef]
- Parks, A.N.; Smith, J.R. Sifting Through the Airwaves: Efficient and Scalable Multiband RF Harvesting. In Proceedings of the 2014 IEEE International Conference on RFID (IEEE RFID), Orlando, FL, USA, 8–10 April 2014. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Negra, R. Design of a dual-band rectifier for wireless power transmission. In Proceedings of the 2013 IEEE Wireless Power Transfer (WPT), Perugia, Italy, 15–16 May 2013. [Google Scholar] [CrossRef]
- Sun, H.; Guo, Y.; He, M.; Zhong, Z. A Dual-Band Rectenna Using Broadband Yagi Antenna Array for Ambient RF Power Harvesting. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 918–921. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, Z.; Guo, Y.X. Enhanced Dual-Band Ambient RF Energy Harvesting With Ultra-Wide Power Range. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 630–632. [Google Scholar] [CrossRef]
- Kim, H.; Kwon, I. Design of high efficiency CMOS rectifier with low reverse leakage for RF energy harvesting. Electron. Lett. 2019, 55, 446–448. [Google Scholar] [CrossRef]
Temperature | 0 °C | 27 °C | 70 °C |
---|---|---|---|
S11 | −14.4 dB @ 0.9 GHz | −15.8 dB @ 0.9 GHz | −10.3 dB @ 0.9 GHz |
−15.8 dB @ 2.4 GHz | −17.8 dB @ 2.4 GHz | −14.7 dB @ 2.4 GHz | |
Output voltage | 0.905 V @ −19 dBm | 0.890 V @ −19 dBm | 0.856 V @ −19 dBm |
2.082 V @ −12 dBm | 2.057 V @ −12 dBm | 2.003 V @ −12 dBm | |
Peak PCE | 68.7% | 67.1% | 63.6% |
Reference | [5] | [11] | [12] | [13] | This Work |
---|---|---|---|---|---|
CMOS technology | 65 nm | 130 nm | 180 nm | 180 nm | 180 nm |
Frequency | 0.9 GHz | 0.9/2.0 GHz | 0.93/2.63/ 0.93 + 2.63 GHz | 0.9/2.45 GHz | 0.9/2.4/ 0.9 + 2.4 GHz |
Peak PCE (@ RF input power) | 36.5% (@ −10 dBm) | 9.1% (@ −19 dBm) | 23.3% (@ −1 dBm) | 47% (@ 1 dBm) | 67.1% (@ −12 dBm) |
Input power range for PCE > 20% | 11 dB | N.A. | N.A. | 19 dB | 21 dB |
Sensitivity (for VDC = 1 V) | −17.7 dBm | −19 dBm | −15.4 dBm | N.A. | −17 dBm |
RL | 147 kΩ | 1 MΩ, 1.5 MΩ | 500 kΩ | 5 kΩ | 100 kΩ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, B.-R.; Kwon, I. A Dual-Band Wide-Input-Range Adaptive CMOS RF–DC Converter for Ambient RF Energy Harvesting. Sensors 2021, 21, 7483. https://doi.org/10.3390/s21227483
Heo B-R, Kwon I. A Dual-Band Wide-Input-Range Adaptive CMOS RF–DC Converter for Ambient RF Energy Harvesting. Sensors. 2021; 21(22):7483. https://doi.org/10.3390/s21227483
Chicago/Turabian StyleHeo, Bo-Ram, and Ickjin Kwon. 2021. "A Dual-Band Wide-Input-Range Adaptive CMOS RF–DC Converter for Ambient RF Energy Harvesting" Sensors 21, no. 22: 7483. https://doi.org/10.3390/s21227483
APA StyleHeo, B.-R., & Kwon, I. (2021). A Dual-Band Wide-Input-Range Adaptive CMOS RF–DC Converter for Ambient RF Energy Harvesting. Sensors, 21(22), 7483. https://doi.org/10.3390/s21227483