The Influence of the Grid Density of Measurement Points on Damage Detection in an Isotropic Plate by the Use of Elastic Waves and Laser Scanning Doppler Vibrometry
Abstract
:1. Introduction
2. The Problem Analysed
3. Results
4. Discussion and Conclusions
- The reduction of the measurement grid density, in numerical and experimental analyses, allows one to locate the damage correctly using the proposed damage detection technique;
- The reduction of the same grid density does not affect the precision of the localisation process;
- The use of a reduced grid significantly also allows one to reduce the measurement time in a significant manner without compromising its sensitivity (Table 2).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LSDV | Laser Scanning Doppler Vibrometer |
SFEM | Spectral Finite Element Method |
RMS | Root Mean Square |
References
- Hamdan, A.; Sultan, M.T.H.; Mustapha, F. Structural health monitoring of biocomposites, fibre-reinforced composites, and hybrid composite. In Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Jawaid, M., Thariq, M., Saba, N., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2019; pp. 227–242. [Google Scholar]
- Stawiarski, A.; Muc, A. On Transducers Localization in Damage Detection by Wave Propagation Method. Sensors 2019, 8, 1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J. Free vibration analysis of delaminated composite beams. Comput. Struct. 2000, 74, 121–129. [Google Scholar] [CrossRef]
- Takeda, S.; Okabe, Y.; Takeda, N. Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors. Compos. Part Appl. Sci. Manuf. 2002, 33, 971–980. [Google Scholar] [CrossRef]
- Zou, Y.; Tong, L.; Steven, G. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—A review. J. Sound Vib. 2000, 230, 357–378. [Google Scholar] [CrossRef]
- Mook, G.; Pohl, J.; Michel, F.; Benziger, T. Non-destructive Inspection of Smart Materials. In Proceedings of the 15th World Conference on Nondestructive Testing, Roma, Italy, 15–21 October 2000. [Google Scholar]
- Todorovska, M.I.; Rahmani, M.T.T. System identification of buildings by wave travel time analysis and layered shear beam models—Spatial resolution and accuracy. Struct. Control. Health Monit. 2013, 20, 686–702. [Google Scholar] [CrossRef]
- Skłodowska, A.M.; Holden, C.; Guéguen, P.; Finnegan, J.; Sidwell, G. Structural change detection applying long-term seismic interferometry by deconvolution method to a modern civil engineering structure (New Zealand). Bull. Earthq. Eng. 2021, 19, 3551–3569. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Sreekanth, T.; Manikanta Reddy, S. Nondestructive health monitoring techniques for composite materials: A review. Polym. Polym. Compos. 2021, 29, 528–540. [Google Scholar] [CrossRef]
- Staszewski, W.J.; Mahzan, S.; Traynor, R. Health monitoring of aerospace composite structures—Active and passive approach. Compos. Sci. Technol. 2009, 69, 1678–1685. [Google Scholar] [CrossRef]
- Staszewski, W.J.; Boller, C. Aircraft structural health and usage monitoring. In Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing; Tomlinson, G.R., Ed.; John Wiley & Sons: Chichester, UK, 2003. [Google Scholar]
- Yan, Y.J.; Cheng, L.; Wu, Z.Y. Development in vibration-based structural damage detection technique. Mech. Syst. Signal Process. 2007, 21, 2198–2211. [Google Scholar]
- Doebling, S.W.; Farrar, C.R.; Prime, M.B. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review; Los Alamos National Laboratory: Los Alamos, NM, USA, 1996. [Google Scholar]
- Frigui, F.; Faye, J.P.; Martin, C. Global methodology for damage detection and localization in civil engineering structures. Eng. Struct. 2018, 15, 686–695. [Google Scholar] [CrossRef] [Green Version]
- Michel, C.; Gueguen, P. Interpretation of the velocity measured in buildings by seismic interferometry based on Timoshenko beam theory under weak and moderate motion. Soil Dyn. Earthq. Eng. 2018, 104, 131–142. [Google Scholar] [CrossRef]
- Hilloulin, B.; Zhang, Y.; Abraham, O.; Loukili, A.; Grondin, F.; Durand, O.; Tournat, V. Small crack detection in cementitious materials using nonlinear coda wave modulation. NDT E Int. 2014, 68, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Obermann, A.; Planes, T.; Larose, E.; Sens-Schönfelder, C.; Campillo, M. Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium. Geophys. J. Int. 2013, 194, 372–382. [Google Scholar]
- Planès, T.; Larose, E.; Margerin, L.; Rossetto, V.; Sens-Schöenfelder, C. Decorrelation and phase-shift of coda waves induced by local changes: Multiple scattering approach and numerical validation. Waves Random Complex Media 2014, 24, 99–125. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Limongelli, M.P. SHM in some European countries. In Seismic Structural Health Monitoring; Springer: Cham, Swizerland, 2019; pp. 303–343. [Google Scholar]
- Picozzi, M.; Parolai, S.; Mucciarelli, M.; Milkereit, C.; Bindi, D.; Ditommaso, R.; Zschau, J. Interferometric analysis of strong ground motion for structural health monitoring: The example of the L’Aquila, Italy, seismic sequence of 2009. Bull. Seismol. Soc. Am. 2011, 101, 635–651. [Google Scholar] [CrossRef]
- Barker, L.M. A Model for Stress Wave Propagation in Composite Materials. J. Compos. Mater. 1971, 5, 140–162. [Google Scholar] [CrossRef]
- Noiret, D.; Roget, J. Calculation of Wave Propagation in Composite Materials Using the LAMB Wave Concept. J. Compos. Mater. 1989, 23, 195–206. [Google Scholar] [CrossRef]
- Muc, A.; Stawiarski, A.T. Wave propagation in composite multilayered structures with delaminations. Mech. Compos. Mater. 2012, 48, 101–107. [Google Scholar] [CrossRef]
- Bathe, K.J. Finite Element Procedures; Prentice Hall: Englewood Cliffs, NJ, USA, 1996; p. 1037. [Google Scholar]
- Hughes, T.; Hulbert, G. Space-time finite element methods for elasto-dynamics: Formulations and error estimates. Comput. Methods Appl. Mech. 1988, 66, 339–363. [Google Scholar] [CrossRef]
- Ihlenburg, F.; Babuška, I. Finite element solution of the Helmholtz equation with high wave number part I: The h-version of the FEM. Comput. Math. Appl. 1995, 30, 9–37. [Google Scholar] [CrossRef] [Green Version]
- Van Pamel, A.; Sha, G.; Rokhlin, S.I.; Lowe, M.J.S. Finite-element modelling of elastic wave propagation and scattering within heterogeneous media. Proc. R. Soc. A 2016, 473, 1–21. [Google Scholar] [CrossRef]
- Seriani, G.; Oliveira, S.P. Numerical modeling of mechanical wave propagation. Riv. Nuovo C 2020, 43, 459–514. [Google Scholar] [CrossRef]
- Thierry, V.; Brown, L.; Chronopoulos, D. Multi-scale wave propagation modelling for two-dimensional periodic textile composites. Compos. Part B Eng. 2018, 150, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Patera, A.T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 1984, 54, 468–488. [Google Scholar] [CrossRef]
- Razavi, M.; Hadidi, A. Assessment of sensitivity-based FE model updating technique for damage detection in large space structures. Struct. Monit. Maint. 2020, 7, 261–281. [Google Scholar]
- Radzieński, M.; Doliński, L.; Krawczuk, M.; Żak, A.; Ostachowicz, W. Application of RMS for damage detection by guided elastic waves. In Proceedings of the 9th International Conference on Damage Assessment of Structures (DAMAS 2011), Oxford, UK, 11–13 July 2011; Volume 305, p. 012085. [Google Scholar]
- Porcu, M.C.; Patteri, D.M.; Melis, S.; Aymerich, F. Effectiveness of the FRF curvature technique for structural health monitoring. Constr. Build. Mater. 2019, 226, 173–187. [Google Scholar] [CrossRef]
- Xu, Y.F.; Zhu, W.D.; Smith, S.A. Non-model-based damage identification of plates using principal, mean and Gaussian curvature mode shapes. J. Sound Vib. 2017, 400, 626–659. [Google Scholar] [CrossRef] [Green Version]
- Laflamme, S.; Cao, L.; Chatzi, E.; Ubertini, F. Damage Detection and Localization from Dense Network of Strain Sensors. Shock Vib. 2017, 2016, 2562949. [Google Scholar] [CrossRef] [Green Version]
- Mathews, V.J. Damage Mapping in Structural Health Monitoring Using a Multi-Grid Architecture. In Proceedings of the 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE), Boise, ID, USA; 2014; Volume 1650, pp. 1247–1255. [Google Scholar]
- Chen, H.L.; Liu, Z.H.; Gong, Y.; Wu, B.; He, C.F. Evolutionary Strategy-Based Location Algorithm for High-Resolution Lamb Wave Defect Detection With Sparse Array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2277–2293. [Google Scholar] [CrossRef]
- Uribe-Riestra, G.C.; Ocampo-Bello, J.A.; Gamboa, F.; Mendoza-Santoyo, F.; Perez-Lopez, C.; Franco-Urquiza, E.A.; Preud’homme, M.; Castillo-Atoche, A.; Aviles, F. Influence of electrode configuration on impact damage evaluation of self-sensing hierarchical composites. J. Intell. Mater. Syst. Struct. 2020, 31, 1416–1429. [Google Scholar] [CrossRef]
- Matveenko, V.; Kosheleva, N.; Serovaev, G. Damage detection algorithm based on using surface mounted fiber-optic sensors on Bragg gratings. Procedia Struct. Integr. 2019, 18, 12–19. [Google Scholar] [CrossRef]
- Ikikardaslar, K.T.; Delale, F. Self-sensing damage in CNT infused epoxy panels with and without glass-fibre reinforcement. Strain 2018, 54, e12268. [Google Scholar] [CrossRef]
- Żak, A.; Radzieński, M.; Ostachowicz, W.; Krawczuk, M. Damage detection strategies based on propagation of guided elastic waves. Smart Mater. Struct. 2012, 21, 035024. [Google Scholar] [CrossRef]
- Sikdar, S.; Kudela, P.; Radzieński, M. Kundu, A.; Ostachowicz, W. Online detection of barely visible low-speed impact damage in 3D-core sandwich composite structure. Compos. Struct. 2018, 185, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Ostachowicz, W.; Kudela, P.; Krawczuk, M.; Żak, A. Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method; Wiley & Sons: West Sussex, UK, 2012. [Google Scholar]
- Runge, C.T. Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Z. Math. Phys. 1901, 46, 224–243. [Google Scholar]
- Palacz, M. Spectral Methods for Modelling of Wave Propagation in Structures in Terms of Damage Detection—A Review. Appl. Sci. 2018, 8, 1124. [Google Scholar] [CrossRef] [Green Version]
- Hunter, D.; Nikolov, G. On the error term of symmetric Gauss-Lobatto quadrature formulae for analytic functions. Math. Comput. 2000, 69, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Żak, A.; Krawczuk, M.; Skarbek, Ł.; Palacz, M. Numerical analysis of elastic wave propagation in unbounded structures. Finite Elem. Anal. Des. 2014, 90, 1–10. [Google Scholar] [CrossRef]
- Harris, F.J.T. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- PSV-400 User Manual. 2021. Available online: http://www.dbkes.com.tr/brosur/psv_400.pdf (accessed on 5 November 2021).
Grid | Finite Element Size | Found x | Found y | Found x | Found y |
---|---|---|---|---|---|
[cm] | Simulation | Experiment | |||
250 | 0.20 | 0.2048 | 0.3072 | 0.1996 | 0.3060 |
200 | 0.25 | 0.2010 | 0.3040 | 0.2060 | 0.3065 |
150 | 0.33 | 0.1980 | 0.2953 | 0.2047 | 0.3087 |
140 | 0.36 | 0.2014 | 0.3058 | 0.2050 | 0.3058 |
130 | 0.38 | 0.2016 | 0.3023 | 0.2093 | 0.3101 |
120 | 0.42 | 0.2059 | 0.3109 | 0.2017 | 0.3109 |
110 | 0.45 | 0.1927 | 0.2936 | 0.2064 | 0.3073 |
100 | 0.50 | 0.2020 | 0.2929 | 0.2071 | 0.3081 |
90 | 0.56 | 0.2022 | 0.3034 | 0.2022 | 0.3090 |
80 | 0.63 | 0.2025 | 0.3101 | 0.2025 | 0.3101 |
70 | 0.71 | 0.1957 | 0.3043 | 0.2029 | 0.3116 |
60 | 0.83 | 0.1949 | 0.2966 | 0.2034 | 0.3136 |
50 | 1.00 | 0.1939 | 0.2959 | 0.2041 | 0.3163 |
40 | 1.25 | 0.2051 | 0.2949 | 0.1923 | 0.2949 |
30 | 1.67 | 0.2241 | 0.3276 | general region | |
20 | 2.50 | general region | general region | ||
10 | 5.00 | not possible | not possible |
Grid ID | No. of Points | % Grid | A/A | Time [h] | RMS | Signal |
---|---|---|---|---|---|---|
250 | 62,500 | 100.00 | 0.78540 | ≈8 | + | + |
200 | 40,000 | 64.00 | 0.50265 | 5.1200 | + | + |
150 | 22,500 | 36.00 | 0.28274 | 2.8800 | + | + |
140 | 19,600 | 31.36 | 0.24630 | 2.5088 | + | + |
130 | 16,900 | 27.04 | 0.21237 | 2.1632 | + | + |
120 | 14,400 | 23.04 | 0.18096 | 1.8432 | + | + |
110 | 12,100 | 19.36 | 0.15205 | 1.5488 | + | + |
100 | 10,000 | 16.00 | 0.12566 | 1.2800 | + | + |
90 | 8100 | 12.96 | 0.10179 | 1.0368 | + | + |
80 | 6400 | 10.24 | 0.08042 | 0.8192 | + | + |
70 | 4900 | 7.84 | 0.06158 | 0.6272 | + | region |
60 | 3600 | 5.76 | 0.04524 | 0.4608 | + | region |
50 | 2500 | 4.00 | 0.03142 | 0.3200 | + | - |
40 | 1600 | 2.56 | 0.02011 | 0.2048 | region | - |
30 | 900 | 1.44 | 0.01131 | 0.1152 | region | - |
20 | 400 | 0.64 | 0.00503 | 0.0512 | region | - |
10 | 100 | 0.16 | 0.00126 | 0.0128 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doliński, Ł.; Krawczuk, M.; Palacz, M.; Waszkowiak, W.; Żak, A. The Influence of the Grid Density of Measurement Points on Damage Detection in an Isotropic Plate by the Use of Elastic Waves and Laser Scanning Doppler Vibrometry. Sensors 2021, 21, 7394. https://doi.org/10.3390/s21217394
Doliński Ł, Krawczuk M, Palacz M, Waszkowiak W, Żak A. The Influence of the Grid Density of Measurement Points on Damage Detection in an Isotropic Plate by the Use of Elastic Waves and Laser Scanning Doppler Vibrometry. Sensors. 2021; 21(21):7394. https://doi.org/10.3390/s21217394
Chicago/Turabian StyleDoliński, Łukasz, Marek Krawczuk, Magdalena Palacz, Wiktor Waszkowiak, and Arkadiusz Żak. 2021. "The Influence of the Grid Density of Measurement Points on Damage Detection in an Isotropic Plate by the Use of Elastic Waves and Laser Scanning Doppler Vibrometry" Sensors 21, no. 21: 7394. https://doi.org/10.3390/s21217394
APA StyleDoliński, Ł., Krawczuk, M., Palacz, M., Waszkowiak, W., & Żak, A. (2021). The Influence of the Grid Density of Measurement Points on Damage Detection in an Isotropic Plate by the Use of Elastic Waves and Laser Scanning Doppler Vibrometry. Sensors, 21(21), 7394. https://doi.org/10.3390/s21217394