vTrust: An IoT-Enabled Trust-Based Secure Wireless Energy Sharing Mechanism for Vehicular Ad Hoc Networks
Abstract
:1. Introduction
- A three-tier trust management-based computational approach is proposed to maintain security during energy sharing.
- It has the ability to evaluate direct and indirect trust whereas no extra infrastructure is required.
- It has the potential to propagate and aggregate trust for combining the current and previous trust to improve scalability and eliminate vulnerabilities of on-off attacks.
2. Literature Review
3. Proposed vTrust Mechanism
3.1. Architecture of vTrust
3.2. Trust Parameters and Evaluation
Algorithm 1 Degree of Trust Computation Flow Process |
|
3.3. Aggregation, Threshold and Decision Making
4. Simulations and Experimental Results
4.1. Malicious Node Detection
4.2. Rate of Successful Energy Sharing
4.3. Energy Consumption of Trust Computations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hussain, R.; Lee, J.; Zeadally, S. Trust in VANET: A Survey of Current Solutions and Future Research Opportunities. IEEE Trans. Intell. Transport. Syst. 2020, 22, 2553–2571. [Google Scholar] [CrossRef]
- Al Najada, H.; Mahgoub, I. Anticipation and alert system of congestion and accidents in VANET using Big Data analysis for Intelligent Transportation Systems. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8. [Google Scholar]
- Nafi, N.S.; Khan, J.Y. A VANET based intelligent road traffic signalling system. In Proceedings of the Australasian Telecommunication Networks and Applications Conference (ATNAC) 2012, Brisbane, Australia, 7–9 November 2012; pp. 1–6. [Google Scholar]
- Tsao, S.L.; Cheng, C.M. Design and evaluation of a two-tier peer-to-peer traffic information system. IEEE Commun. Mag. 2011, 49, 165–172. [Google Scholar] [CrossRef]
- Ibrahim, B.F.; Toycan, M.; Mawlood, H.A. A Comprehensive Survey on VANET Broadcast Protocols. In Proceedings of the 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM), Dubai, United Arab Emirates, 9–10 January 2020; pp. 298–302. [Google Scholar]
- Sumra, I.; Sellappan, P.; Abdullah, A.; Ali, A. Security issues and challenges in Manet-Vanet-Fanet: A Survey. EAI Endorsed Trans. Energy Web 2018, 5, e16. [Google Scholar] [CrossRef] [Green Version]
- Sangaiah, A.K.; Ramamoorthi, J.S.; Rodrigues, J.J.; Rahman, M.A.; Muhammad, G.; Alrashoud, M. LACCVoV: Linear Adaptive Congestion Control With Optimization of Data Dissemination Model in Vehicle-to-Vehicle Communication. IEEE Trans. Intell. Transport. Syst. 2020, 22, 5319–5328. [Google Scholar] [CrossRef]
- Ali, I.; Li, F. An efficient conditional privacy-preserving authentication scheme for Vehicle-To-Infrastructure communication in VANETs. Veh. Commun. 2020, 22, 100228. [Google Scholar] [CrossRef]
- Fitah, A.; Badri, A.; Moughit, M.; Sahel, A. Performance of DSRC and WIFI for Intelligent Transport Systems in VANET. Procedia Comput. Sci. 2018, 127, 360–368. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, F.Y.; Wang, K.; Lin, W.H.; Xu, X.; Chen, C. Data-driven intelligent transportation systems: A survey. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1624–1639. [Google Scholar] [CrossRef]
- Affam, A.; Buswig, Y.M.; Othman, A.K.B.H.; Julai, N.B.; Qays, O. A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems. Renew. Sustain. Energy Rev. 2021, 135, 110186. [Google Scholar] [CrossRef]
- El-Bayeh, C.Z.; Alzaareer, K.; Aldaoudeyeh, A.M.I.; Brahmi, B.; Zellagui, M. Charging and Discharging Strategies of Electric Vehicles: A Survey. World Electr. Veh. J. 2021, 12, 11. [Google Scholar] [CrossRef]
- Hajimiragha, A.; Canizares, C.A.; Fowler, M.W.; Elkamel, A. Optimal transition to plug-in hybrid electric vehicles in Ontario, Canada, considering the electricity-grid limitations. IEEE Trans. Ind. Electron. 2009, 57, 690–701. [Google Scholar] [CrossRef]
- Eteng, A.A.; Rahim, S.K.A.; Leow, C.Y.; Jayaprakasam, S.; Chew, B.W. Low-power near-field magnetic wireless energy transfer links: A review of architectures and design approaches. Renew. Sustain. Energy Rev. 2017, 77, 486–505. [Google Scholar] [CrossRef]
- Roes, M.G.; Duarte, J.L.; Hendrix, M.A.; Lomonova, E.A. Acoustic energy transfer: A review. IEEE Trans. Ind. Electron. 2012, 60, 242–248. [Google Scholar] [CrossRef]
- Cunha, F.; Villas, L.; Boukerche, A.; Maia, G.; Viana, A.; Mini, R.A.; Loureiro, A.A. Data communication in VANETs: Protocols, applications and challenges. Ad Hoc Netw. 2016, 44, 90–103. [Google Scholar] [CrossRef]
- Patra, D.; Chavhan, S.; Gupta, D.; Khanna, A.; Rodrigues, J.J. V2X Communication based Dynamic Topology Control in VANETs. In Proceedings of the 2021 International Conference on Distributed Computing and Networking, Nara, Japan, 5–8 January 2021; pp. 62–68. [Google Scholar]
- Awan, K.A.; Din, I.U.; Almogren, A.; Guizani, M.; Altameem, A.; Jadoon, S.U. Robusttrust—A pro-privacy robust distributed trust management mechanism for internet of things. IEEE Access 2019, 7, 62095–62106. [Google Scholar] [CrossRef]
- Awan, K.A.; Din, I.U.; Almogren, A.; Guizani, M.; Khan, S. StabTrust—A stable and centralized trust-based clustering mechanism for IoT enabled vehicular ad-hoc networks. IEEE Access 2020, 8, 21159–21177. [Google Scholar] [CrossRef]
- Al Junaid, M.A.H.; Syed, A.; Warip, M.N.M.; Azir, K.N.F.K.; Romli, N.H. Classification of security attacks in VANET: A review of requirements and perspectives. MATEC Web Conf. 2018, 150, 06038. [Google Scholar] [CrossRef]
- Awan, K.A.; Din, I.U.; Almogren, A.; Almajed, H.; Mohiuddin, I.; Guizani, M. Neurotrust-artificial neural network-based intelligent trust management mechanism for large-scale internet of medical things. IEEE Internet Things J. 2020, 21, 15672–15682. [Google Scholar]
- Zhang, R.; Yan, F.; Zhu, Y.; Xia, W.; Zhang, S.; Shen, L. Optimisation strategy of roadside units deployment towards VANET localisation with dead reckoning. IET Commun. 2020, 14, 3504–3511. [Google Scholar] [CrossRef]
- Agrawal, A.; Garg, A.; Chaudhiri, N.; Gupta, S.; Pandey, D.; Roy, T. Security on vehicular ad hoc networks (VANET): A review paper. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 231–235. [Google Scholar]
- Abassi, R.; Douss, A.B.C.; Sauveron, D. TSME: A trust-based security scheme for message exchange in vehicular Ad hoc networks. Hum. Centric Comput. Inf. Sci. 2020, 10, 1–19. [Google Scholar] [CrossRef]
- Arora, S.K.; Kumar, G.; Kim, T.h. Blockchain Based Trust Model Using Tendermint in Vehicular Adhoc Networks. Appl. Sci. 2021, 11, 1998. [Google Scholar] [CrossRef]
- Das, R.; Singh, M.; Majumder, K. SGSQoT: A Community-Based Trust Management Scheme in Internet of Things. In Proceedings of the International Ethical Hacking Conference 2018, Kolkata, India, 9–10 January 2019; pp. 209–222. [Google Scholar]
- Abderrahim, O.B.; Elhdhili, M.H.; Saidane, L. TMCoI-SIOT: A trust management system based on communities of interest for the social Internet of Things. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 747–752. [Google Scholar]
- Javaid, S.; Afzal, H.; Arif, F.; Iltaf, N. Trust management for SOA based social WoT system. In Proceedings of the IEEE ICACT 2018: 20th International Conference on Advanced Communication Technology 2018, Chuncheon, Korea, 11–14 February 2018. [Google Scholar]
- Lakhdari, A.; Abusafia, A.; Bouguettaya, A. Crowdsharing Wireless Energy Services. arXiv 2020, arXiv:2011.07650. [Google Scholar]
- Li, Q.; Rui, X.; Chen, D.; Feng, Y.; Xiao, N.; Gan, L.; Zhang, Q.; Yu, Y.; Huang, S. A high-capacity ammonium vanadate cathode for zinc-ion battery. Nano Micro Lett. 2020, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Manivannan, D.; Moni, S.S.; Zeadally, S. Secure authentication and privacy-preserving techniques in Vehicular Ad-hoc NETworks (VANETs). Veh. Commun. 2020, 25, 100247. [Google Scholar] [CrossRef]
- Al-Shareeda, M.A.; Anbar, M.; Hasbullah, I.H.; Manickam, S. Survey of authentication and privacy schemes in vehicular ad hoc networks. IEEE Sens. J. 2020, 21, 2422–2433. [Google Scholar] [CrossRef]
- Tomar, R. Maintaining Trust in VANETs using Blockchain. ACM SIGAda Ada Lett. 2020, 40, 91–96. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Wu, Z.; Li, G.; Zhou, M.; Li, P.; Zhang, Y. Communication reliability-restricted energy sharing strategy in active distribution networks. Appl. Energy 2021, 282, 116238. [Google Scholar] [CrossRef]
- Sheikh, M.S.; Liang, J.; Wang, W. Security and privacy in vehicular ad hoc network and vehicle cloud computing: A survey. Wirel. Commun. Mob. Comput. 2020, 2020. [Google Scholar] [CrossRef] [Green Version]
- Stępień, K.; Poniszewska-Marańda, A. Security Measures in the Vehicular Ad-Hoc Networks in the Aspect of DoS Attack. In Proceedings of the Complex, Intelligent, and Software Intensive Systems, Lodz, Poland, 1–3 July 2020; pp. 222–232. [Google Scholar]
- Kumar, A.; Gupta, N. A Secure RSU based Security against Multiple Attacks in VANET. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Coimbatore, India, 3–5 December 2020; pp. 1156–1163. [Google Scholar]
- Santhi, G.; Sheela, D. Reliability refinement in VANET with hybrid jamming attacks using novel index based voting algorithm. Peer Netw. Appl. 2020, 13, 2145–2154. [Google Scholar] [CrossRef]
- Awan, K.A.; Din, I.U.; Zareei, M.; Talha, M.; Guizani, M.; Jadoon, S.U. Holitrust—A holistic cross-domain trust management mechanism for service-centric Internet of Things. IEEE Access 2019, 7, 52191–52201. [Google Scholar] [CrossRef]
- Al-Kharasani, N.M.; Zukarnain, Z.A.; Subramaniam, S.K.; Hanapi, Z.M. An Adaptive Relay Selection Scheme for Enhancing Network Stability in VANETs. IEEE Access 2020, 8, 128757–128765. [Google Scholar] [CrossRef]
- Berdik, D.; Otoum, S.; Schmidt, N.; Porter, D.; Jararweh, Y. A survey on blockchain for information systems management and security. Inf. Process. Manag. 2021, 58, 102397. [Google Scholar] [CrossRef]
- Hayouni, H.; Hamdi, M.; Kim, T.H. A survey on encryption schemes in wireless sensor networks. In Proceedings of the 2014 7th International Conference on Advanced Software Engineering and Its Applications (ASEA), Haikou, China, 20–23 December 2014; pp. 39–43. [Google Scholar]
- Din, I.U.; Almogren, A.; Guizani, M.; Zuair, M. A decade of Internet of Things: Analysis in the light of healthcare applications. IEEE Access 2019, 7, 89967–89979. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Javaid, N.; Hussain, H.M.; Abdul, W.; Almogren, A.; Alamri, A.; Azim Niaz, I. An optimized home energy management system with integrated renewable energy and storage resources. Energies 2017, 10, 549. [Google Scholar] [CrossRef] [Green Version]
- Haseeb, K.; Ud Din, I.; Almogren, A.; Islam, N. An energy efficient and secure IoT-based WSN framework: An application to smart agriculture. Sensors 2020, 20, 2081. [Google Scholar]
- Thori Lind, J. Repeated surveys and the Kalman filter. Econom. J. 2005, 8, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Ryu, K.; Back, J. Distributed Kalman-filtering: Distributed optimization viewpoint. arXiv 2019, arXiv:1903.07807. [Google Scholar]
- Haseeb, K.; Islam, N.; Almogren, A.; Din, I.U.; Almajed, H.N.; Guizani, N. Secret sharing-based energy-aware and multi-hop routing protocol for IoT based WSNs. IEEE Access 2019, 7, 79980–79988. [Google Scholar] [CrossRef]
- Din, I.U.; Hassan, S.; Almogren, A.; Ayub, F.; Guizani, M. PUC: Packet update caching for energy efficient IoT-based information-centric networking. Future Gener. Comput. Syst. 2020, 111, 634–643. [Google Scholar] [CrossRef]
- Khattak, H.A.; Tehreem, K.; Almogren, A.; Ameer, Z.; Din, I.U.; Adnan, M. Dynamic pricing in industrial internet of things: Blockchain application for energy management in smart cities. J. Inf. Secur. Appl. 2020, 55, 102615. [Google Scholar]
- Islam, S.U.; Khattak, H.A.; Pierson, J.M.; Din, I.U.; Almogren, A.; Guizani, M.; Zuair, M. Leveraging utilization as performance metric for CDN enabled energy efficient internet of things. Measurement 2019, 147, 106814. [Google Scholar] [CrossRef]
- Saba, T.; Haseeb, K.; Ud Din, I.; Almogren, A.; Altameem, A.; Fati, S.M. EGCIR: Energy-Aware Graph Clustering and Intelligent Routing Using Supervised System in Wireless Sensor Networks. Energies 2020, 13, 4072. [Google Scholar] [CrossRef]
- Hameed, A.R.; Almogren, A.; Khattak, H.A.; Din, I.U.; Gani, A.B. Towards Energy-Efficient Mobile Ad Optimization: An App Developer Perspective. Appl. Sci. 2020, 10, 6889. [Google Scholar] [CrossRef]
Approach | Contribution | Limitation |
---|---|---|
[24] | Utilizes blockchain to maintain privacy and security. | Requires computational and processing power to perform the operations effectively. |
[25] | Utilizes trust, blockchain, and tendermint for security management. | Requires excessive energy. |
[26] | Implements community architecture to manage trust among nodes. | Depends on fog nodes where communities may cause integrity challenges. |
[27] | Uses Kalman filter technique to predict nodes’ behavior and prevent on-off attacks | Requires to be evaluated against other potential IoT attacks. |
[28] | Utilizes dedicated networks for trust management for improving security. | Needs validation against existing potential attacks. |
Symbols | Description | Symbols | Description |
---|---|---|---|
Limit to bound the absolute trust. | ⊎ | Binary operator used to perform addition. | |
∑ | To formulate absolute trust value. | Knowledge parameter of trust. | |
p | Trustor. | Aggregation Process. | |
r | Trustee | Past trust values. | |
T | Trust degree. | n | Number of observations available. |
Reputation component. | Absolute trust. | ||
Ability parameter. | Benevolence parameter. |
Parameters | Value |
---|---|
Area of network | 200 m, 300 m, 400 m |
Number of nodes | 50∼150 Nodes |
Simulation time | 50∼550 Min. |
Transmission range | 300∼350 m |
Routing protocol | AODV, CBRD |
MAC | IEEE 802.11 |
Mobility model | Random Direction Model |
Transmission rate | 6∼8 Mbps |
Position of RSUs | x = 200, y = 200 |
Node Average Speed (Urban) | 60∼90 km/h |
Node Average Speed (Rural) | 40∼60 km/h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awan, K.A.; Din, I.U.; Almogren, A.; Kim, B.-S.; Altameem, A. vTrust: An IoT-Enabled Trust-Based Secure Wireless Energy Sharing Mechanism for Vehicular Ad Hoc Networks. Sensors 2021, 21, 7363. https://doi.org/10.3390/s21217363
Awan KA, Din IU, Almogren A, Kim B-S, Altameem A. vTrust: An IoT-Enabled Trust-Based Secure Wireless Energy Sharing Mechanism for Vehicular Ad Hoc Networks. Sensors. 2021; 21(21):7363. https://doi.org/10.3390/s21217363
Chicago/Turabian StyleAwan, Kamran Ahmad, Ikram Ud Din, Ahmad Almogren, Byung-Seo Kim, and Ayman Altameem. 2021. "vTrust: An IoT-Enabled Trust-Based Secure Wireless Energy Sharing Mechanism for Vehicular Ad Hoc Networks" Sensors 21, no. 21: 7363. https://doi.org/10.3390/s21217363
APA StyleAwan, K. A., Din, I. U., Almogren, A., Kim, B.-S., & Altameem, A. (2021). vTrust: An IoT-Enabled Trust-Based Secure Wireless Energy Sharing Mechanism for Vehicular Ad Hoc Networks. Sensors, 21(21), 7363. https://doi.org/10.3390/s21217363