
sensors

Article

Refinement of TOA Localization with Sensor Position
Uncertainty in Closed-Form

Yi Gan 1, Xunchao Cong 1,* and Yimao Sun 2

1 The 10th Research Institute of CETC, Chengdu 610036, China; sweat_gan1980@163.com
2 School of Information and Communication Engineering, University of Electronic Science and Technology

of China, Chengdu 611731, China; yimaosun@std.uestc.edu.cn
* Correspondence: congxunchao@foxmail.com

Received: 6 November 2019; Accepted: 6 January 2020; Published: 10 January 2020
����������
�������

Abstract: The subject of localization has received great deal attention in the past decades. Although it is
perhaps a well-studied problem, there is still room for improvement. Traditional localization methods
usually assume the number of sensors is sufficient for providing desired performance. However,
this assumption is not always satisfied in practice. This paper studies the time of arrival (TOA)-based
source positioning in the presence of sensor position errors. An error refined solution is developed for
reducing the mean-squared-error (MSE) and bias in small sensor network (the number of sensors is
fewer) when the noise or error level is relatively large. The MSE performance is analyzed theoretically
and validated by simulations. Analytical and numerical results show the proposed method attains the
Cramér-Rao lower bound (CRLB). It outperforms the existing closed-form methods with slightly raising
computation complexity, especially in the larger noise/error case.

Keywords: source localization; time of arrival (TOA); small sensor network; sensor position
uncertainty; closed-form; error refined

1. Introduction

Location determination is one of the classical research fields in signal processing. With the rise of
the fifth-generation communication system (5G), Internet of things, automatic pilot and unmanned
aerial vehicle, localization continues to receive great attention [1–4]. Based on different type of
measurements, the common localization methods estimate the source position using time of arrival
(TOA), time difference of arrival (TDOA), angle of arrival (AOA), Doppler frequency, Fingerprint and
received signal strength (RSS) [5–13]. To improving the accuracy further, a series of hybrid method
is developed by combining several kinds of measurements [14–16]. Since TOA localization has the
precision advantage in position estimate, particularly in indoor environments [17], it attracts much
interest in the netted mono-static radar, multi-static radar and distributed multi-input multi-output
(MIMO) system.

TOA localization is categorized into two classes: circular-TOA method and elliptic-TOA
method [18]. The circular-TOA localization [19] is usually applied to estimate the emitter location
whose signal is intercepted by passive sensors. The TOAs (or ranges if the propagation speed
is known) determine circles, taking the sensor as the center, that trace out the possible source location.
The elliptic-TOA localization [20,21] creates ellipse loci through the signals traveling times from
transmitters to the target and reflected back to received sensors. The ellipses from different sensor
pairs intersect, yielding an estimate of the target position. In this paper, we focus our study on the
circular-TOA case.

Time synchronization error is one of the factors that degrade the TOA localization performance.
An opportunistic positioning method is proposed, exploiting radio transmitters and GPS-equipped

Sensors 2020, 20, 390; doi:10.3390/s20020390 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1337-8945
http://www.mdpi.com/1424-8220/20/2/390?type=check_update&version=1
http://dx.doi.org/10.3390/s20020390
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 390 2 of 19

nodes jointly [22]. G. Wang [23] considers the asynchronous sensors that the start transmission time is
unknown. The source location is solved through second-order cone relaxation (SOCR). Considering
the synchronization and localization problem simultaneously, the cooperation improves localization
performance significantly without the requirement of high anchor node densities [24]. Y. Zou [25]
presents an improved semidefinite programming (SDP) method when both asynchronism and sensor
uncertainty occurs. Transforming the TOA measurements into TDOA measurements may be an
effective way to eradicate the clock offset of the target’s clock [26]. Using the a priori of the existing
unknown clock skew, the source position is solved by a fractional programming problem, resulting
in the superior performance of the state-of-the-art methods. Y. Kang [27] proposes a technique to
eliminate the time synchronization error iteratively, achieving a position estimator almost without
time asynchronization. To reduce the computational cost, by applying robust squared-range (R-SR)
and weighted least squares (WLS) criteria, [28] converts the originally nonconvex problem into
a generalized trust region subproblem (GTRS) framework. It realizes comparable performance
to the current methods with significantly higher effectiveness. To deal with multiple types of
errors, the artificial neural network (ANN) and radial basis function (RBF) neural network are
introduced to alleviate the accuracy loss due to the measurement error, non-line of sight (NLOS)
error, and synchronization error [29].

Another factor that reduces the position estimation accuracy is sensor position uncertainty.
Many works of literature study the source location estimate problem without considering the sensor
position errors [30]. The research in [31] discusses the effect of sensor position errors. It indicates
that using statistical knowledge of the sensor position errors is able to achieve the estimator with
optimum localization performance. Commonly, there are two ways to take advantage of this
statistical knowledge. On the one hand, the errors are estimated in terms of the coarse source position
obtained under the assumption that sensor positions are precise. After calibrating the sensors, a more
accurate source position estimate is achieved. This method is more efficient for locating multiple
disjoint sources [32]. On the other hand, the sensor position error can be equivalently transformed into
the measurement noise, where a new weighting matrix is constructed to cancel out the effect of sensor
errors [33–35].

Usually, the Maximum Likelihood (ML) approaches which perform exhaustive grid search or
iteration, and the SDP-based solutions are computation-cumbersome. Due to the low computation
cost and easy implementation in engineering, the closed-form approaches are more attractive.
The two-stage method, which is perhaps the most classical closed-form solution, resorts to weighted
least squares (WLS) only [34]. The projection method for TOA localization is firstly proposed by [36].
The work in [37] improves the previous study and derives a closed-form projection method in reaching
the CRLB performance. The improved projection method (IPM) doesn’t introduce a redundant
variable, so it performs better than the two-step WLS (2WLS) [34]. However, the new projection
matrix is not appropriate for some geometries. The research in [38] extends the multidimensional
scaling (MDS) method [30] to the case with sensor position uncertainties. The modified MDS
method implements better performance than the 2WLS when the sensor position errors are significant.
However, the accuracy when using a small wireless sensor network, in which the number of sensors
is limited, is poor. The recent research in [39] improves the TDOA localization performance in
this situation. To the best of our knowledge, there is no such research on TOA localization in the
presence of sensor position errors. The work in [40] illustrates that reducing the bias can improve the
performance of the 2WLS method significantly. Therefore, subtracting the estimation bias from the
solution in the second stage resulting in a better solution when the noise is relatively large. Since the
bias is from the first stage which introduces the redundant variable, eliminating the redundant
variable before estimating the bias is more effective, especially when the sensor network consists of
fewer sensors.

This paper focuses on improving the TOA localization performance when the sensor network
consists of fewer sensors. Converting the sensor position errors and measurement noise together as
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equivalent measurement noise, the TOA-based source location estimation is formulated as a weighted
optimization problem with constraint. The proposed closed-form solution deals with this problem
through three stages. The first stage introduces a weighting matrix in terms of the sensor position
statistical knowledge to obtain a coarse solution, which is similar to the spherical-interpolation [14],
where the constraint is neglected. The covariance of the coarse solution is derived. Then, the solution
is improved through the relationship between the source position and redundant variable, using the
covariance of stage-1. Stage three recalls the constraint to evaluate the estimate bias in the
previous stage. The source position is refined by subtracting the estimated value, resulting in the
final estimator. The analytical result shows the proposed method has CRLB performance when the
noise and errors are mild. The simulation part verifies the theoretical analysis. It demonstrates that the
new method outperforms the compared counterparts when the noise/error level is relatively higher
in a small sensor network. Moreover, the mean-squared-error (MSE) and bias are comparable to the
existing methods when using more sensors.

The main contributions of this paper are:

1. The weighted spherical-interpolation is derived, which solves the source position and redundant
variable successively;

2. An approximate expression of the theoretical covariance analysis is presented for the weighted
spherical-interpolation;

3. Eliminating the redundant variable, a refinement for the solution is proposed to improve the
MSE and bias further;

4. The simulation shows the proposed method performs better than the state-of-the-art methods
when using fewer sensors.

The novelties of this paper are:

1. Introducing a weighting matrix for spherical-interpolation resulting in the weighted
spherical-interpolation;

2. Analyzing the covariance in the small noise region;
3. Refining the solution to improve the MSE and lower the bias further when using only 4 sensors.

This paper is organized as follows: Section 2 formulates the problem and clarifies the task.
The proposed estimator is developed in Section 3. Section 4 presents the CRLB and theoretical
performance analysis. Section 5 demonstrates the numerical results to show the advantages of the
proposed when using fewer sensors. The conclusion is drawn in Section 6.

The unified notations in this paper is as following: Bold upper and lower case letter/symbol
denote the matrix and vector. The vectors in this paper are column vectors. xo is the true value of x.
‖x‖ represents the Euclidean norm of x. diag{x} is a diagonal matrix consisted of the elements of x.
XT and X−1 are the transpose and inverse of X. x(i : j) denotes a subvector constructed by the i-th to
j-th elements. � is the Hadamard product. sgn is the the signum operation.

2. Problem Formulation

Consider a scenario with M sensors deployed in a N-dimension space (N = 2 or 3), whose true
positions are so

i , i = 1, 2, · · · , M. Each sensor has the ability to measure the TOA from the unknown
source. Denote the true value of the source position is uo. The TOA between the unknown source and
sensor i is

τo
i = ‖uo − so

i ‖/c , (1)

where c is the propagation speed. Multiplying c on both sides of (1) gives

ro
i = ‖uo − so

i ‖ , (2)
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where ro
i = cτo

i is called range of arrival (ROA) measurement. In practice, the measured ROA is
expressed as the true value with noise,

ri = ro
i + ni (3)

where ni is the measurement noise. Collecting all ROAs together yields the measurement vector

r = ro + n , (4)

where ro = [ro
1, ro

2, · · · , ro
M]T , n is modeled zero-mean with Gaussian distribution, and the covariance

matrix of n is Qr.
Noting the true sensor position is unavailable, only the erroneous counterpart is known,

si = so
i + ∆si . (5)

The error vector ∆s = [∆sT
1 , ∆sT

2 , · · · , ∆sT
M]T is Gaussian distribution with zero mean and

covariance Qs. We further assume that ∆s is independent of the measurement noise n, and ∆s is
irrelevant across axis and sensors.

The localization scenario is shown in Figure 1. Our mission is locating the unknown source
using the noisy TOA measurements and erroneous sensor positions, where the solution is
closed-form. The performance with fewer sensors shall be improved compared with the existing
closed-form method.
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Figure 1. Localization scenario. Open circles are the unknown true sensor positions and open triangles
represent the available imprecise sensor positions.

3. Refined Estimator

The derivation begins with the ROA expression (2). Squaring both sides of (2) and substituting (3)
and (5) into the result, we arrive

− r2
i + sT

i si − 2sT
i uo + vo

= 2ro
i ni + n2

i + 2(uo − so
i )

T∆si − ∆sT
i ∆si ,

(6)

where vo = uoTuo. Stacking (6) across i = 1, 2, · · · , M yields matrix form equation

h1 −Aψo = ε , (7)

where the unknown is ψo = [uoT , vo]T ,
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h1 =


−r2

1 + sT
1 s1

−r2
2 + sT

2 s2
...

−r2
M + sT

MsM

 , (8)

A =

[
2s1 2s2 · · · 2sM
1 1 · · · 1

]T

, (9)

ε = Bn + C∆s + ε′ , (10)

and

B = 2 diag{ro} , (11)

C = 2

(u
o − so

1)
T

. . .
(uo − so

M)T

 , (12)

ε′ = n� n−


∆sT

1 ∆s1

∆sT
2 ∆s2
...

∆sT
M∆sM


T

(13)

is the second order noise term. Based on the least square criterion, finding uo is solving the
optimization problem

min
ψ

(h1 −Aψ)TW(h1 −Aψ) (14)

s.t. ψ(N + 1) = ψ(1 : N)Tψ(1 : N) . (15)

W is the weighting matrix approximating by

W = E[εεT ]−1 ' (BQrB + CQsCT)−1 . (16)

Traditional method [34] first minimizes (14) by ignoring the constraint. Then the constraint is
utilized in the second stage to improve the accuracy. In this paper, we shall follow a similar step to
obtain the initial solution, but the processing is different from the 2-stage WLS (2WLS) [34]. A further
stage is needed to refine the bias resulting in the final solution.

3.1. Coarse Solution

Rewriting (7) as
h1 −G1uo + zvo ' Bn + C∆s (17)

where G1 = A(:, 1 : N) and z = 1M. The second-order noise term ε′ is neglected. The existing sphere
interpolation (SI) method [14] is suboptimal since it doesn’t take the different error in each row of (7)
into account. We introduce a weighting matrix W that is set equal to E[εεT ]−1 to balance the error in
each element of e. Using such a W leads to the weighted sphere interpolation, reducing the covariance
in the estimated ψ [41]. The optimization problem in (14) and (15) becomes

min
u,v

(h1 −G1u + zv)TW(h1 −G1u + zv) (18)

s.t. v = uTu . (19)
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We now turn to solving the constrained optimization problem (18) and (19). If the constraint
between u and v is ignored, the WLS solution of uo in terms of v is

u = H(h1 + zv) , (20)

where
H = (GT

1 WG1)
−1GT

1 W . (21)

Putting (20) into the right side of (17) yields

h1 −G1u + zv = R(h1 + zvo) , (22)

where R = IM + G1H. Using (22) to the original cost function (18), the optimization problem given
by (18) and (19) is equivalent to

min
v

(h1 + zv)TRTWR(h1 + zv) , (23)

subject to (19). Ignoring the constraint (19), finding the suboptimal v is solving the unconstrained
optimization problem (23). Taking the derivative of (23) with respect to v and equaling the result to
zero, the estimation of vo is given by the WLS technology

v = −(zTRTWRz)−1zTRTWRh1 . (24)

To obtain the source location estimate, the value of v calculated from (24) is substituted to (20).

3.2. Error Reduction

We next explore the constraint to reduce the error of the coarse u and v given by (20) and (24).
Before formulating the problem in this stage, the covariance expression of u and v shall be detailed.
To the best knowledge of the authors, there is no such analysis for weighted spherical-interpolation.

Subtracting both sides of (20) by the true value uo yields

∆u = H(h1 + zv−G1uo) . (25)

Using the measurement Equation (17), G1uo can be expressed by

G1uo = h1 + zvo − Bn−C∆s . (26)

Substituting (26) to (25) and using ∆v = v− vo yield

∆u = H(z∆v + Bn + C∆s) . (27)

∆v is obtained by subtracting both sides of v (24) by the true value

∆v = −(zTRTWRz)−1zTRTWR(h1 + zvo)

= ρT(Bn + C∆s) ,
(28)

where
ρ = −(zTRTWRz)−1RTWRz . (29)

Inserting (28) into (25) yields the expression of ∆u,

∆u = P(Bn + C∆s) (30)
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where
P = H(IM + zρT) . (31)

Denoting ∆ψ = [∆uT , ∆v]T , the covariance is

cov(ψ) = E[∆ψ∆ψT ]

= E

{[
∆u∆uT ∆u∆v
∆v∆uT ∆v2

]}

=

[
PW−1PT PW−1ρ

ρTW−1PT ρTW−1ρ

]
.

(32)

To reduce the errors in the coarse solution, a new formula shall be established in terms of the
constraint (19). Recall the relationship between the source position uo and the residual variable vo,

vo = uoTuo . (33)

Commonly, it is reasonable to consider the errors in the estimated unknown parameters,
e.g., ∆u and ∆v, as additional [33,34,40,42]. Thus, we can express the redundant variable v as

v = vo + ∆v . (34)

Substituting (33) to (34) results
v− uoTuo = ∆v . (35)

Squaring both sides of
u = uo + ∆u (36)

elementwise results in
u� u− uo � uo = 2uo � ∆u , (37)

where the second-order term of ∆u is dropped. Together with the equation obtained in (35), we have

h′1 −G′1ψ′o = B′o∆ψ , (38)

where

ψ′o = uo � uo , (39)

h′1 =

[
u� u

v

]
, (40)

G′1 =

[
IN
1T

N

]
, (41)

B′o =

[
2 diag{uoT}

1

]
. (42)

Thus, the estimate of ψ′o is the one that satisfies

min
ψ′

(h′1 −ψ′)TW′(h′1 −G′1ψ′) , (43)

which is given by
ψ′ = (G′T1 W′G′1)

−1G′T1 W′h′1 , (44)
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where the weighting matrix W′ is approximated as

W′ = (B′ cov(ψ)B′)−1 , (45)

where B′o is replaced by B′ using u instead. W′ is related to W by (32).
The estimation of uo is the square root of ψ′ in term of (39). However, there is sign ambiguity

since using only ψ′ can’t determine the sign of u elementwise. One way to solve this sign ambiguity is
to use the sign given by the first stage [10]. Thus, the final error-reduced estimate is

u′ = sgn(u)�
√

ψ′ (46)

where u is the result given in the first stage (20), and

v′ = u′Tu′ (47)

in terms of (33).

3.3. Refinement

The last stage will refine the solution above. Express the u′ as

u′ = uo + ∆u′ (48)

where ∆u′ is the estimation error. So the expression of vo in terms of u′ and ∆u′ is

vo = (u′ − ∆u′)T(u′ − ∆u′) ≈ u′Tu′ − 2u′T∆u′ . (49)

Substituting (48) and (49) to (17) and dropping the second order noise term yield

h2 −G2∆u′ ' Bn + C∆s , (50)

where

h2 = h1 −G1u′ + zv′ , (51)

G2 = 2


(u′ − s1)

T

(u′ − s2)
T

...
(u′ − sM)T


T

. (52)

The estimation of error ∆u is

∆û′ = (GT
2 WG2)

−1GT
2 Wh2 . (53)

The final solution is
û = u′ − ∆û′ . (54)

Remark 1. The weighting matrix W is determined by the true value of the source position. A remedy is setting
B as identity and C = IM ⊗ IN/N for a coarse solution. Then, the weighting matrix can be updated through
the coarse solution and a better initial solution result. In the refinement stage, the updated W is sufficient for an
accurate final solution.

Remark 2. The relationship (33) has been used in Section 3.2, but it is insufficient to obtain the best estimate.
Normally, the constrained weighted least squares (CWLS) is better than the two-stage WLS [43–46], which means
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dealing with the quadratic cost function and the constraint subsequently is suboptimal. Although the 2WLS
approaches the CRLB in small noise region, its performance degradation is distinct as the noise level increases.
The work in [40] illustrates that the large bias is the reason for performance degradation. Reducing the bias of the
first stage can improve performance significantly. Therefore, subtracting the estimation bias from the solution in
the second stage can improve the performance when the noise is relatively large. Since the bias is from the first
stage which introduces the redundant variable, eliminating the redundant variable before estimating the bias is
more effective when the sensor network consists of fewer sensors.

4. Analysis

4.1. CRLB

The CRLB is the most widely applied technique for bounding the ability to estimate the interest
parameters from the given data. Although the CRLB of TOA localization when the sensor positions
are uncertain has been developed in [34], we will present the CRLB from the other perspective for the
theoretical performance comparison.

Equation (10) can be rewritten as
ε = Bñ , (55)

where
ñ = n + B−1C∆s . (56)

In (56), the sensor errors are linearly transformed as an additional term of measurement noise.
Thus, ñ is called the equivalent noise. This transformation combines the noise and sensor position
errors, which simplifies the algorithm derivation and analysis expression.

In terms of the equivalent noise, the corresponding covariance matrix is

Q = E[ññT ] = Qr + B−1CQsCTB−1 . (57)

Then, the CRLB is given by [41]

CRLB(uo) =

(
∂roT

∂uo Q
∂ro

∂uoT

)−1

(58)

where

∂ro

∂uoT =


(uo − so

1)
T/ro

1
(uo − so

1)
T/ro

1
...

(uo − so
M)T/ro

M

 . (59)

4.2. Covariance

The estimator in the first and the second stage can be expressed as

u′ = uo + ∆u′ ,

∆û′ = ∆u′ + δu′ .
(60)

Substituting (60) to (54) yields
û = uo − δu′ . (61)

Therefore, the final estimation error is −δu,

−δu′ = û− uo

= −(GT
2 WG2)

−1GT
2 W(Bn + C∆s) .

(62)
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After neglecting the noise/error terms higher than second order, the covariance of û
is approximately

cov(û′) = E[δu′δu′T ]−1 ' (GT
2 WG2)

−1. (63)

4.3. Comparison

Under the small noise conditions

1) ni/ro
i ≈ 0 ,

2) ‖∆si‖/ro
i ≈ 0 ,

(64)

Substituting (16) and (57) to (63), the inverse of the theoretical covariance of û is

cov(û)−1 ≈ GoT
2 B−1QB−1Go

2 . (65)

For simplicity, we denote
Go

3 = B−1Go
2 . (66)

Substituting (11) and (52) into (66), after some algebraic manipulations, and comparing the result
with (59) yield

Go
3 =

∂ro

∂uoT . (67)

Therefore, we conclude that (63) equals to the CRLB if the noise is mild.

5. Simulations

Simulations run with M = 6 sensors. It is worth to note that the proposed method is applicable to
both two-dimensional and three-dimensional cases. Only the results for the more complicated case
of 3-D are illustrated in this Section. The certain sensor positions are listed in Table 1. We use a near
source and a far source for the experiments: uo

near = [400, 350, 550]T m and uo
f ar = [2000, 1750, 2250]T m.

The covariance matrix of TOAs and sensor positions are Qr = σ2
r IM and Qs = σ2

s diag{ρ} ⊗ IN ,
where ρ is a scaling vector for sensor position errors. The proposed method is compared with three
closed-form solutions, 2WLS [34], improved projection method (IPM) [37] and multidimensional
scaling (MDS) based method [30], and the maximum likelihood estimator (MLE) implemented through
Gauss-Newton iteration. In addition, the CRLB is introduced as a benchmark. The number of ensemble
runs is K = 1000, unless stated otherwise. The performance is evaluated by MSE and bias,

MSE(u) =
1
K

K

∑
k=1

(uk − uo)T(uk − uo) , (68)

bias(u) =
1
K

K

∑
k=1
‖uk − uo‖ , (69)

where uk is the estimates at ensemble run k.

Table 1. Certain sensor positions.

Sensor s1 s2 s3 s4 s5 s6

x (m) −100 200 400 350 300 300

y (m) 100 −300 150 200 500 100

z (m) −100 −200 100 100 200 150
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5.1. Fewer Sensors

The motivation of this research is reducing the MSE and bias when using fewer sensors.
Figures 2–5 illustrate the MSE and bias as the TOA measurement noise increases, where the sensor
network consist of 4 sensors, s1, s2, s3 and s4. The sensor position error level is fixed at σ2

s = 10−5 m2.
The scaling vector is ρ = [10, 2, 10, 40]T . For the near source, the 2WLS, IPM and the proposed
algorithm have comparable MSE and bias if σ2

r 6 10−2 m2, while the MDS is more robust than 2WLS,
IPM and even the proposed in relatively larger error region, although the sensor position errors are
not taken into account. When the noise increases, the 2WLS, IPM and MDS deviate the CRLB after
the noise power higher than 10−2 m2, while the proposed method diverges over 15 dB later than the
2WLS and IPM. If the noise increases further, the proposed method keeps the MLE-level MSE and bias
even when the noise is significantly large. The MLE deviates the MLE after σ2

r > 1 m2. The result is
similar for the far source, the proposed method deviates the CRLB when σ2

r > 10−1.5 m2, while the
performance of the 2WLS, IPM and MDS become worse at σ2

r = 10−3 m2. The proposed method
outperforms the 2WLS and IPM, even after deviating the CRLB. And the proposed algorithm lowers
the bias, especially when the σ2

s > 10−2 m2 for near target and σ2
r > 10−3 m2 for far source. The MLE

is the best but delays the threshold only 5 dB.
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Figure 2. MSE performance as noise power increasing (near source, 4 sensors).
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Figure 4. MSE performance as noise power increasing (far source, 4 sensors).
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Figure 5. Bias performance as noise power increasing (far source, 4 sensors).

The performance behavior as the position error level of sensors varies is demonstrated in
Figures 6–9. The sensors’ deployment is the same as the experiments above. The TOA measurement
noise power is set as σ2

r = 10−3 m2. If the source is near, Figure 6 indicates that the 2WLS, IPM and MDS
fail to reach the CRLB after σ2

s > 10−4 m2, 10−4 m2 and 10−4.5 m2 respectively, while the proposed
method delays the divergence to σ2

s > 10−2 m2. And the MLE delays the threshold 5 dB further.
In Figure 7, five methods asymptotically have the same level bias in small error region. The proposed
method can yield a much smaller bias about 15 dB around the error level at σ2

s > 10−2 m2. It lowers
the bias over 10 dB than the compared three closed-form methods at most, which is comparable
to the MLE. Moreover, Figures 7 and 9 imply the reason that 2WLS, IPM and MDS deviate the
CRLB earlier. The raising bias deteriorates the MSE performance. The results when locating a far
source are similar to before. The proposed achieves the CRLB accuracy until σ2

s = 10−3 m2 and have
bias less than that of the three existing closed-form methods since σ2

s > 10−5 m2.
To show the effectiveness of the proposed work more clearly, the performance loss is presented

with the percentage with respect to the CRLB. The results for near source and far source are listed
in Tables 2 and 3. The proposed method provides comparable MSE performance to the MLE before
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the divergence. The MSE of the proposed and MLE is very close to the CRLB where the difference is
less than 2%. Noting the ensemble runs is limited, and the bias has been subtracted from the generated
noise, the MSE may be slightly lower than the CRLB. 2WLS and IPM have larger performance loss
with respect to the CRLB. The MDS is more robust than 2WLS, IPM and even the proposed in relatively
larger error region, although the sensor position errors are not taken into account.
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Figure 6. MSE performance as error level increasing (near source, 4 sensors).
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Figure 7. Bias performance as error level increasing (near source, 4 sensors).

Table 2. MSE increasing percentage (near source).

Noise Power (dB) −60 −50 −40 −30 −20 −10 0 10 20

Proposed (%) 0.42 −1.42 −0.57 −1.62 0.34 1.10 3.04 × 103 4.55 × 104 9.61 × 104

2WLS (%) 3.54 1.74 1.38 3.37 34.15 367.12 2.96 × 104 7.55 × 104 1.52 × 104

IPM (%) 5.59 4.36 1.31 5.48 50.56 538.84 5.78 × 104 2.23 × 105 2.62 × 104

MLE (%) 0.40 −1.22 −0.94 −1.38 0.34 1.05 1.27 3.60 × 104 8.39 × 103

MDS (%) 54.86 44.10 12.83 5.44 49.05 508.94 8.24 × 103 2.89 × 104 6.79 × 103
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Table 3. MSE increasing percentage (far source).

Noise Power (dB) −60 −50 −40 −30 −20 −10 0

Proposed (%) 0.92 −1.84 −1.27 −1.06 0.93 1.64 × 103 3.12 × 103

2WLS (%) 14.34 10.58 6.43 19.37 178.63 1.30 × 104 6.73 × 104

IPM (%) 18.34 14.94 8.85 27.36 237.50 1.31 × 104 7.90 × 104

MLE (%) 0.86 −0.88 −1.32 −1.68 0.88 1.98 2.09 × 104

MDS (%) 62.80 53.94 25.53 30.20 225.49 3.20 × 103 1.59 × 104
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Figure 8. MSE performance as error level increasing (far source, 4 sensors).
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Figure 9. Bias performance as error level increasing (far source, 4 sensors).

5.2. More Sensors

The expectation of the proposed solution is improving the performance when using fewer sensors,
while the accuracy under a normal sensor network with sufficient sensors should not be worse than
the existing methods. The simulations above illustrate the advantages of the proposed closed-form
solution on both MSE and bias. In this subsection, we’d like to show the new approach has comparable
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MSE and bias to the compared closed-form solutions. The scaling vector is ρ = [10, 2, 10, 40, 20, 3]T .
To limit the number of illustrations, we only present the results for single near source in Figures 10–13.
They display similar performance of all methods as the measurement noise power or sensor error
level increases, albeit the proposed is slightly better than the 2WLS, IPM and MDS when σ2

r > 102 m2

or σ2
s > 10 m2. The simulation results verify that the proposed method improves the performance

when using 4 sensors but does as good as the existing methods when using more sensors, rather than
designed for 4 sensors-case only.
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Figure 10. MSE performance as noise power increasing (near source, 6 sensors).
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Figure 11. Bias performance as noise power increasing (near source, 6 sensors).
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Figure 12. MSE performance as error level increasing (near source, 6 sensors).
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Figure 13. Bias performance as error level increasing (near source, 6 sensors).

5.3. Computation Time

The processing time of the proposed method and the compared counterparts is collected by
Matlab 2018b on a typical PC with AMD R5 3500X CPU. The running time of 20000 independent tests
is listed in Table 4. The proposed method is less computation-complexity than MLE, IPM and MDS
and is comparable with the 2WLS method.

Table 4. Computation time.

Method Proposed 2WLS MLE IPM MDS

Time (s) 29.90 21.69 142.07 72.80 112.15

Rel. Time 1 0.73 4.75 2.43 3.75



Sensors 2020, 20, 390 17 of 19

5.4. Summary of Simulations

We shall summarize the simulation results. The proposed method performs better than the existing
methods because it gives a more accurate coarse location than IPM and refines the bias that 2WLS and
MDS do not. The coarse solution of IPM can’t reach the CRLB in some cases, e.g., the configuration used
in this paper. After refinement, the performance is still worse than the proposed. However, the coarse
solution of the proposed is able to attain the CRLB when the noise is quite small, as well as the final
solution of 2WLS and MDS. The refining step reduces bias further, as shown in Figures 3, 5, 7 and 9.
That is the reason why the proposed outperforms the 2WLS and MDS if the noise increases from
10−2 m2 to 1 m2 for a near source or from 10−3 m2 to 0.1 m2 for a far source.

The proposed method performs worse than MLE and MDS when the noise power is relatively
high. MLE is implemented by the Gauss-Newton iteration, which is the best for parameter estimation.
The MDS has been verified to be robust for the source localization. It has better MSE than the proposed
method in larger noise region, but it is inferior to the proposed both MSE and bias in other cases.

Moreover, the proposed method is less computation-consumption but the performance is better
than the existing in relatively large noise and error conditions.

6. Conclusions

A refined TOA localization solution is proposed in this paper, with better MSE and bias than
the existing methods when the sensors composing the network are few. This new solution is
closed-form, whose three stages take the WLS only. The MSE is analyzed theoretically, which is
proven mathematically attaining the CRLB if the measurement noise and sensor errors are small.
The MSE and bias are examined in the simulations, verifying the analytical result and illustrating the
superiority of the proposed method.

Locating a source in a N-dimensional (N-D) space using TOA requires N sensors at least,
which means the minimum sensor numbers for a N-D space target positioning is N. However,
the proposed method, as well as the 2WLS and IPM, are not applicable when there are only N sensors
since the redundant parameter is introduced for pseudo-linearization. The TOA localization using the
minimal sensor network may be an interesting subject for further study.
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