MNNMs Integrated Control for UAV Autonomous Tracking Randomly Moving Target Based on Learning Method
Abstract
:1. Introduction
2. Preliminaries
2.1. Problem Definition
2.2. Learning Method
2.2.1. Deep Learning
2.2.2. Reinforcement Learning
3. Integrated Controller Training by Learning Method
3.1. Controller Framework Based on Multi-Neural-Network Modules (MNNMs)
3.2. Target Perception
3.3. Guidance Control
4. Experiments and Simulation Results
4.1. Training Results
4.1.1. Perception Neural Network
4.1.2. Guidance Control Neural Network
4.2. Simulation Test
5. Flight Results
5.1. Hardware Platform
5.2. Comparing with Proportional-Integral-Derivative (PID) Method
5.3. Autonomous Tracking Target under Complex Scenario
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomic, T.; Schmid, K.; Lutz, P.; Domel, A.; Kassecker, M.; Mair, E.; Grixa, I.L.; Ruess, F.; Suppa, M.; Burschka, D. Toward a Fully Autonomous UAV: Research Platform for Indoor and Outdoor Urban Search and Rescue. IEEE Robot. Autom. Mag. 2012, 19, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Walker, O.; Vanegas, F.; Gonzalez, F. A Framework for Multi-Agent UAV Exploration and Target-Finding in GPS-Denied and Partially Observable Environments. Sensors 2020, 20, 4739. [Google Scholar] [CrossRef] [PubMed]
- Metni, N.; Hamel, T. A UAV for bridge inspection: Visual servoing control law with orientation limits. Autom. Constr. 2007, 17, 3–10. [Google Scholar] [CrossRef]
- Li, D.; Liu, H.; Dong, Y.; Xi, Q.; He, R. Comparison of UAV Target Tracking Techniques. In The Second International Conference on Mechatronics and Automatic Control, Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2015; Volume 334. [Google Scholar]
- Yang, B.; Dutta, P. Cooperative Navigation for Small UAVs in GPS-Intermittent Environments. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 16–20 June 2019. [Google Scholar]
- Borowczyk, A.; Nguyen, D.T.; Nguyen, P.A.; Nguyen, D.Q.; Saussié, D.; Le Ny, J. Autonomous landing of a multirotor micro air vehicle on a high velocity ground vehicle. IFAC PapersOnLine 2017, 50, 10488–10494. [Google Scholar] [CrossRef]
- Wenzel, K.E.; Masselli, A.; Zell, A. Automatic Take Off, Tracking and Landing of a Miniature UAV on a Moving Carrier Vehicle. J. Intell. Robot. Syst. 2011, 61, 221–238. [Google Scholar] [CrossRef] [Green Version]
- Kamath, A.K.; Tripathi, V.K.; Yogi, S.C.; Behera, L. Vision-based Fast-terminal Sliding Mode Super Twisting Controller for Autonomous Landing of a Quadrotor on a Static Platform. In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Rossi, E.; Bruschetta, M.; Carli, R.; Chen, Y.; Farina, M. Online Nonlinear Model Predictive Control for tethered UAVs to perform a safe and constrained maneuver. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Rabah, M.; Rohan, A.; Mohamed, S.A.S.; Kim, S.-H. Autonomous Moving Target-Tracking for a UAV Quadcopter Based on Fuzzy-PI. IEEE Access 2019, 7, 38407–38419. [Google Scholar] [CrossRef]
- Li, S.; Yeung, D.-Y. Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models. In The Thirty-First AAAI Conference on Artificial Intelligence; AAAI Press: Menlo Park, CA USA, 2017; pp. 4140–4146. [Google Scholar]
- Shen, S.; Mulgaonkar, Y.; Michael, N.; Kumar, V. Vision-Based State Estimation and Trajectory Control Towards High-Speed Flight with a Quadrotor. In Robotics: Science and Systems IX; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Giusti, A.; Guzzi, J.; Cireşan, D.C.; He, F.L.; Rodríguez, J.P.; Fontana, F.; Faessler, M.; Forster, C.; Schmidhuber, J.; Di Caro, G.; et al. A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robot. Autom. Lett. 2016, 1, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Bachrach, A.; Prentice, S.; He, R.; Henry, P.; Huang, A.S.; Krainin, M.; Maturana, D.; Fox, D.; Roy, N. Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments. Int. J. Robot. Res. 2012, 31, 1320–1343. [Google Scholar] [CrossRef]
- Schmid, K.; Tomic, T.; Ruess, F.; Hirschmuller, H.; Suppa, M. Stereo vision based indoor/outdoor navigation for flying robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 3955–3962. [Google Scholar]
- Diego, M.R.; Pedro, C.; Rogelio, L. Visual detection and tracking with UAVs, following a mobile object. Adv. Robot. 2019, 33, 388–402. [Google Scholar]
- Deisenroth, M.P.; Fox, D.; Rasmussen, C.E. Gaussian Processes for Data-Efficient Learning in Robotics and Control. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 408–423. [Google Scholar] [CrossRef] [Green Version]
- Tarokh, M.; Shenoy, R. Vision-based Robotic Person Following in Fast Walking. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 3172–3177. [Google Scholar]
- Ramos, A.R.; Sampedro, C.; Bavle, H.; De La Puente, P.; Campoy, P. A Deep Reinforcement Learning Strategy for UAV Autonomous Landing on a Moving Platform. J. Intell. Robot. Syst. Theory Appl. 2019, 93, 351–366. [Google Scholar] [CrossRef]
- Li, S.; Liu, T.; Zhang, C.; Yeung, D.-Y.; Shen, S. Learning Unmanned Aerial Vehicle Control for Autonomous Target Following. arXiv 2017, arXiv:1709.08233v1. [Google Scholar]
- Wang, X.; Ren, P.; Yu, L.; Han, L.; Deng, X. UAV First View Landmark Localization via Deep Reinforcement Learning. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR); Springer: Cham, Switzerland, 2018. [Google Scholar]
- Xie, J.; Peng, X.; Wang, H.; Niu, W.; Zheng, X. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy. Sensors 2020, 20, 5630. [Google Scholar] [CrossRef]
- Lin, J.; Wang, L.; Gao, F.; Shen, S.; Zhang, F. Flying through a Narrow Gap Using Neural Network: An End-to-End Planning and Control Approach; IEEE: Piscataway, NJ, USA, 2019; pp. 3526–3533. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE Press: Piscataway, NJ, USA, 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Shulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
- Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2009, 81, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.-S.; Hou, X.-R.; Tang, J.; Cheng, H.-F. Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 930–943. [Google Scholar] [CrossRef]
- Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016, arXiv:1606.01540. [Google Scholar]
- Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Goldberg, K.; Gonzalez, J.; Jordan, M.; Stoica, I. RLlib: Abstractions for Distributed Reinforcement Learning. arXiv 2017, arXiv:1712.09381. [Google Scholar]
- Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; Abbeel, P. High-dimensional continuous control using generalized advantage estimation. arXiv 2015, arXiv:1506.02438. [Google Scholar]
Hyperparameters | Value | Hyperparameters | Value |
---|---|---|---|
no. of workers | 10 | lamda (λ) | 0.97 |
memory size (N) | 50,000 | clip (ε) | 0.2 |
batch size (K) | 2000 | actor net learning rate | 0.0003 |
length of one episode (T) | 500 | critic net learning rate | 0.0015 |
gamma (γ) | 0.998 | grad_norm | 0.5 |
Velocity | 0.5 m/s | Velocity | 0.5 m/s |
---|---|---|---|
Proportional Integral Derivative (PID) Controller | |||
MTE of X (m) | 0.55 | 1.14 | Failed |
MTE of Y (m) | 0.12 | 0.16 | |
SSE (m) | 0.52 | 1.53 | |
Neural Network Controller | |||
MTE of X (m) | 0.46 | 0.80 | 0.83 |
MTE of Y (m) | 0.02 | 0.07 | 0.08 |
SSE (m) | 0.41 | 0.85 | 0.95 |
0.5 m/s | 1 m/s | 1.2 m/s | |
---|---|---|---|
P | 1.5 | 2.2 | 2.4 |
I | 0.04 | 0.1 | 0.12 |
D | 0.01 | 0.01 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Cai, Z.; Zhao, J.; Wang, Y.; Wang, Y.; Lu, K. MNNMs Integrated Control for UAV Autonomous Tracking Randomly Moving Target Based on Learning Method. Sensors 2021, 21, 7307. https://doi.org/10.3390/s21217307
Li M, Cai Z, Zhao J, Wang Y, Wang Y, Lu K. MNNMs Integrated Control for UAV Autonomous Tracking Randomly Moving Target Based on Learning Method. Sensors. 2021; 21(21):7307. https://doi.org/10.3390/s21217307
Chicago/Turabian StyleLi, Mingjun, Zhihao Cai, Jiang Zhao, Yibo Wang, Yingxun Wang, and Kelin Lu. 2021. "MNNMs Integrated Control for UAV Autonomous Tracking Randomly Moving Target Based on Learning Method" Sensors 21, no. 21: 7307. https://doi.org/10.3390/s21217307
APA StyleLi, M., Cai, Z., Zhao, J., Wang, Y., Wang, Y., & Lu, K. (2021). MNNMs Integrated Control for UAV Autonomous Tracking Randomly Moving Target Based on Learning Method. Sensors, 21(21), 7307. https://doi.org/10.3390/s21217307