Data Transmission Reduction in Wireless Sensor Network for Spatial Event Detection
Abstract
:1. Introduction
- A new method is presented for data transmission reduction in WSN where spatial events have to be detected based on data from neighboring sensor nodes. The method is based on predicting the possible errors of event detection that can be encountered when current sensor readings are not reported;
- The introduced method was implemented for event detection in a cargo monitoring system;
- Feasibility and effectiveness of the proposed method were experimentally verified using a prototype of WSN. The conducted experiments have involved in comparison with state-of-the-art approaches.
2. Related Works
2.1. Compression
2.2. Aggregation
2.3. Adaptive Sampling
2.4. Dual Prediction
2.5. Event-Triggered Transmission
3. Proposed Method
Algorithm 1 Operation of parent node |
|
Algorithm 2 Operation of child node |
|
- if then ,
- if and then ,
- if and then .
- The outcomes of and are different;
- The condition of may be satisfied for ;
- The condition of may be satisfied for ;
- exists for which conditions of both and may be satisfied.
4. Experiments and Results
4.1. Experimental Testbed
4.2. Results and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ge, X.; Han, Q.L.; Zhang, X.M.; Ding, L.; Yang, F. Distributed event-triggered estimation over sensor networks: A survey. IEEE Trans. Cybern. 2019, 50, 1306–1320. [Google Scholar] [CrossRef]
- Zhu, X. Complex event detection for commodity distribution Internet of Things model incorporating radio frequency identification and Wireless Sensor Network. Future Gener. Comput. Syst. 2021, 125, 100–111. [Google Scholar] [CrossRef]
- Al Qundus, J.; Dabbour, K.; Gupta, S.; Meissonier, R.; Paschke, A. Wireless sensor network for AI-based flood disaster detection. Ann. Oper. Res. 2020, 1–23. [Google Scholar] [CrossRef]
- Medina-García, J.; Sánchez-Rodríguez, T.; Galán, J.A.G.; Delgado, A.; Gómez-Bravo, F.; Jiménez, R. A wireless sensor system for real-time monitoring and fault detection of motor arrays. Sensors 2017, 17, 469. [Google Scholar] [CrossRef] [Green Version]
- Arjun, D.; Indukala, P.K.; Menon, K.U. Border surveillance and intruder detection using wireless sensor networks: A brief survey. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1125–1130. [Google Scholar]
- Singh, S.; Malik, A.; Singh, P.K. A threshold-based energy efficient military surveillance system using heterogeneous wireless sensor networks. Soft Comput. 2021, 1–14. [Google Scholar]
- Chen, X.; Kim, K.T.; Youn, H.Y. Integration of Markov random field with Markov chain for efficient event detection using wireless sensor network. Comput. Netw. 2016, 108, 108–119. [Google Scholar] [CrossRef]
- Shi, Y.; Deng, M.; Yang, X.; Liu, Q. A spatial anomaly points and regions detection method using multi-constrained graphs and local density. Trans. GIS 2017, 21, 376–405. [Google Scholar] [CrossRef]
- Halme, T.; Nitzan, E.; Koivunen, V. Bayesian Method for Spatial Change-Point Detection of Propagating Event. arXiv 2021, arXiv:2104.04335. [Google Scholar]
- Oliker, N.; Ohar, Z.; Ostfeld, A. Spatial event classification using simulated water quality data. Environ. Model. Softw. 2016, 77, 71–80. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, X.; Xu, Z. Real-time event detection with water sensor networks using a spatio-temporal model. In Proceedings of the 21st International Conference on Database Systems for Advanced Applications (DASFAA 2016), Dallas, TX, USA, 16–19 April 2016; Springer: Cham, Switzerland; pp. 194–208. [Google Scholar]
- Adegboye, M.A.; Fung, W.K.; Karnik, A. Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches. Sensors 2019, 19, 2548. [Google Scholar] [CrossRef] [Green Version]
- Bukkapatnam, S.T.; Mukkamala, S.; Kunthong, J.; Sarangan, V.; Komanduri, R. Real-time monitoring of container stability loss using wireless vibration sensor tags. In Proceedings of the 2009 IEEE International Conference on Automation Science and Engineering (CASE 2009), Bangalore, India, 22–25 August 2009; IEEE: Piscataway, NJ, USA, 2016; pp. 221–226. [Google Scholar]
- Lewandowski, M.; Płaczek, B. An event-aware cluster-head rotation algorithm for extending lifetime of wireless sensor network with smart nodes. Sensors 2019, 19, 4060. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, M.; Płaczek, B.; Bernas, M. Classifier-Based Data Transmission Reduction in Wearable Sensor Network for Human Activity Monitoring. Sensors 2021, 21, 85. [Google Scholar] [CrossRef]
- Roy, N.R.; Chandra, P. Analysis of data aggregation techniques in WSN. In Proceedings of the 2020 International conference on innovative computing and communications (ICICC 2020), New Delhi, India, 21–23 February 2020; Springer: Singapore, 2020; pp. 571–581. [Google Scholar]
- Jarwan, A.; Sabbah, A.; Ibnkahla, M. Data transmission reduction schemes in WSNs for efficient IoT systems. IEEE J. Sel. Areas Commun. 2019, 37, 1307–1324. [Google Scholar] [CrossRef]
- Dias, G.M.; Bellalta, B.; Oechsner, S. A survey about prediction-based data reduction in wireless sensor networks. ACM Comput. Surv. (CSUR) 2016, 49, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Giouroukis, D.; Dadiani, A.; Traub, J.; Zeuch, S.; Markl, V. A survey of adaptive sampling and filtering algorithms for the internet of things. In Proceedings of the 14th ACM International Conference on Distributed and Event-based Systems (DEBS), Montreal, QC, Canada, 13–17 July 2020; pp. 27–38. [Google Scholar]
- Leon-Garcia, F.; Palomares, J.M.; Olivares, J. D2R-TED: Data—Domain reduction model for threshold-based event detection in sensor networks. Sensors 2018, 18, 3806. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Kumar, M.; Verma, S. Accurate detection of important events in WSNs. IEEE Syst. J. 2017, 13, 248–257. [Google Scholar] [CrossRef]
- Nagdive, A.S.; Ingole, P.K. An implementation of energy efficient data compression security mechanism in clustered wireless sensor network. In Proceedings of the 2015 International Conference on Advances in Computer Engineering and Applications (ICACEA 2015), Ghaziabad, India, 19–20 March 2015; IEEE: Piscataway, NJ, USA, 2016; pp. 375–380. [Google Scholar]
- Oladimeji, M.O.; Turkey, M.; Ghavami, M.; Dudley, S. A new approach for event detection using k-means clustering and neural networks. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 11–16 July 2015; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Zhang, J.; Lin, Z.; Tsai, P.W.; Xu, L. Entropy-driven data aggregation method for energy-efficient wireless sensor networks. Inf. Fusion 2020, 56, 103–113. [Google Scholar] [CrossRef]
- Saqib, N.; Mysorewala, M.; Cheded, L. A novel multi-scale adaptive sampling-based approach for energy saving in leak detection for WSN-based water pipelines. Meas. Sci. Technol. 2017, 28, 125102. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, K.; Wan, W.; Mei, H. Adaptive energy saving algorithms for Internet of Things devices integrating end and edge strategies. Trans. Emerg. Telecommun. Technol. 2017, 32, e4122. [Google Scholar]
- Bhuiyan, M.Z.A.; Wu, J.; Wang, G.; Wang, T.; Hassan, M.M. e-Sampling: Event-sensitive autonomous adaptive sensing and low-cost monitoring in networked sensing systems. ACM Trans. Auton. Adapt. Syst. (TAAS) 2017, 12, 1–29. [Google Scholar] [CrossRef]
- Monteiro, L.C.; Delicato, F.C.; Pirmez, L.; Pires, P.F.; Miceli, C. Dpcas: Data prediction with cubic adaptive sampling for wireless sensor networks. In Proceedings of the 2017 International Conference on Green, Pervasive, and Cloud Computing (GPC 2017), Cetara, Italy, 11–14 May 2017; Springer: Cham, Switzerland; pp. 353–368. [Google Scholar]
- Wang, H.; Yemeni, Z.; Ismael, W.M.; Hawbani, A.; Alsamhi, S.H. A reliable and energy efficient dual prediction data reduction approach to WSNs based on Kalman filter. IET Commun. 2021. Available online: https://research.thea.ie/handle/20.500.12065/3660 (accessed on 27 October 2021).
- Chowdhury, S.; Roy, A.; Benslimane, A.; Giri, C. On semantic clustering and adaptive robust regression based energy-aware communication with true outliers detection in WSN. Ad Hoc Netw. 2019, 94, 101934. [Google Scholar] [CrossRef]
- Abdul-Salaam, G.; Abdullah, A.H.; Anisi, M.H. Energy-efficient data reporting for navigation in position-free hybrid wireless sensor networks. IEEE Sensors J. 2017, 17, 2289–2297. [Google Scholar] [CrossRef]
- Ge, X.; Han, Q.L.; Wang, Z. A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybern. 2017, 49, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Chaudhari, S. Embedded machine learning-based data reduction in application-specific constrained IoT networks. In Proceedings of the 35th Annual ACM Symposium on Applied Computing (SAC’20), Brno, Czech Republic, 30 March–3 April 2020; pp. 747–753. [Google Scholar]
- Fafoutis, X.; Marchegiani, L.; Elsts, A.; Pope, J.; Piechocki, R.; Craddock, I. Extending the battery lifetime of wearable sensors with embedded machine learning. In Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 269–274. [Google Scholar]
- Rashid, S.; Akram, U.; Khan, S.A. WML: Wireless sensor network based machine learning for leakage detection and size estimation. Procedia Comput. Sci. 2015, 63, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.; Farei-Campagna, T.; Pasztor, A.; Da Forno, R.; Gsell, T.; Faillettaz, J.; Thiele, L. Event-triggered natural hazard monitoring with convolutional neural networks on the edge. In Proceedings of the 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN 2019), Montreal, QC, Canada, 16–18 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 73–84. [Google Scholar]
- Dziengel, N.; Seiffert, M.; Ziegert, M.; Adler, S.; Pfeiffer, S.; Schiller, J. Deployment and evaluation of a fully applicable distributed event detection system in Wireless Sensor Networks. Ad Hoc Netw. 2016, 37, 160–182. [Google Scholar] [CrossRef]
- Hammer, H.L.; Yazidi, A.; Rue, H. A new quantile tracking algorithm using a generalized exponentially weighted average of observations. Appl. Intell. 2019, 49, 1406–1420. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote. Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- He, C.; Ma, M.; Wang, P. Extract interpretability-accuracy balanced rules from artificial neural networks: A review. Neurocomputing 2020, 387, 346–358. [Google Scholar] [CrossRef]
- Barakat, N.; Bradley, A.P. Rule extraction from support vector machines: A review. Neurocomputing 2010, 74, 178–190. [Google Scholar] [CrossRef]
- Yeoh, C.M.; Chai, B.L.; Lim, H.; Kwon, T.H.; Yi, K.O.; Kim, T.H.; Lee, C.S.; Kwark, G.H. Ubiquitous containerized cargo monitoring system development based on wireless sensor network technology. Int. J. Comput. Commun. Control. 2011, 6, 779–793. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.J.; Chen, L.B.; Su, J.P. Design and Implementation of Intelligent Tape for Monitoring High-Price and Fragile Cargo Shipments During Transport Procedures. IEEE Sens. J. 2020, 20, 14521–14533. [Google Scholar] [CrossRef]
- Aderohunmu, F.A.; Paci, G.; Brunelli, D.; Deng, J.D.; Benini, L.; Purvis, M. An application-specific forecasting algorithm for extending wsn lifetime. In Proceedings of the 2013 IEEE international conference on distributed computing in sensor systems (IEEE DCOSS), Cambridge, MA, USA, 21–23 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 374–381. [Google Scholar]
- Gnap, J.; Jagelčák, J.; Marienka, P.; Frančák, M.; Kostrzewski, M. Application of MEMS sensors for evaluation of the dynamics for cargo securing on road vehicles. Sensors 2021, 21, 2881. [Google Scholar] [CrossRef]
- Yuste-Delgado, A.J.; Cuevas-Martinez, J.C.; Triviño-Cabrera, A. A Distributed Clustering Algorithm Guided by the Base Station to Extend the Lifetime of Wireless Sensor Networks. Sensors 2020, 20, 2312. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, M.; Bernas, M.; Loska, P.; Szymała, P.; Płaczek, B. Extending Lifetime of Wireless Sensor Network in Application to Road Traffic Monitoring. In Proceedings of the 2019 International Conference on Computer Networks (CN 2019), Kamień Śląski, Poland, 21–23 June 2019; Springer: Cham, Switzerland, 2019; pp. 112–126. [Google Scholar]
- Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [Google Scholar] [CrossRef] [Green Version]
- Abirami, S.; Chitra, P. Energy-efficient edge based real-time healthcare support system. Adv. Comput. 2020, 117, 339–368. [Google Scholar]
- Berthold, M.R.; Diamond, J. Constructive training of probabilistic neural networks. Neurocomputing 1998, 19, 167–183. [Google Scholar] [CrossRef] [Green Version]
- Kiranmai, S.A.; Laxmi, J.A. Data mining for classification of power quality problems using WEKA and the effect of attributes on classification accuracy. Prot. Control. Mod. Power Syst. 2018, 3, 1–12. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Küppers, F.; Albers, J.; Haselhoff, A. Random Forest on an Embedded Device for Real-time Machine State Classification. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), Coruña, Spain, 2–6 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowski, M.; Płaczek, B. Data Transmission Reduction in Wireless Sensor Network for Spatial Event Detection. Sensors 2021, 21, 7256. https://doi.org/10.3390/s21217256
Lewandowski M, Płaczek B. Data Transmission Reduction in Wireless Sensor Network for Spatial Event Detection. Sensors. 2021; 21(21):7256. https://doi.org/10.3390/s21217256
Chicago/Turabian StyleLewandowski, Marcin, and Bartłomiej Płaczek. 2021. "Data Transmission Reduction in Wireless Sensor Network for Spatial Event Detection" Sensors 21, no. 21: 7256. https://doi.org/10.3390/s21217256
APA StyleLewandowski, M., & Płaczek, B. (2021). Data Transmission Reduction in Wireless Sensor Network for Spatial Event Detection. Sensors, 21(21), 7256. https://doi.org/10.3390/s21217256