A Range-Based Algorithm for Autonomous Navigation of an Aerial Drone to Approach and Follow a Herd of Cattle
Abstract
:1. Introduction
- The paper presents a control algorithm for a UAV to follow and intercept the location of a ground herd. To the best of the authors’ knowledge, the proposed work remains the only approach to address such an application.
- The control algorithm is based on range data. More importantly, the algorithm is robust against noisy data. The performance of the proposed method and a state of the art method was tested with noisy data in simulation. Our method has shown better performance than the state of the art method when compared.
- The UAV has the ability to intersect the herd’s location (finding the herd and moving along with it) and navigate along with it irrespective of the herd’s path complexity. We conducted multiple simulation and experiment tests in various complexity levels to confirm this point.
2. Problem Statement and Solution Development
3. The Proposed Algorithm and the Dynamic Model
Algorithm 1 Calculating |
Input: , Output:
|
4. Simulation Results
4.1. Target Location Interception
4.2. Performance under Noise
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papandroulakis, N.; Dimitris, P.; Pascal, D. An automated feeding system for intensive hatcheries. Aquac. Eng. 2002, 26, 13–26. [Google Scholar] [CrossRef]
- Jorgensen, M.; Adams-Progar, A.; De Passille, A.; Rushen, J.; Godden, S.; Chester-Jones, H.; Endres, M. Factors associated with dairy calf health in automated feeding systems in the Upper Midwest United States. J. Dairy Sci. 2017, 100, 5675–5686. [Google Scholar] [CrossRef]
- Reis, J.; Weldon, A.; Ito, P.; Stites, W.; Rhodes, M.; Davis, D.A. Automated feeding systems for shrimp: Effects of feeding schedules and passive feedback feeding systems. Aquaculture 2021, 541, 736800. [Google Scholar] [CrossRef]
- Pivoto, D.; Waquil, P.D.; Talamini, E.; Finocchio, C.P.S.; Dalla Corte, V.F.; de Vargas Mores, G. Scientific development of smart farming technologies and their application in Brazil. Inf. Process. Agric. 2018, 5, 21–32. [Google Scholar] [CrossRef]
- Jayaraman, P.P.; Yavari, A.; Georgakopoulos, D.; Morshed, A.; Zaslavsky, A. Internet of things platform for smart farming: Experiences and lessons learnt. Sensors 2016, 16, 1884. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Abdelsalam, M.; Khorsandroo, S.; Mittal, S. Security and privacy in smart farming: Challenges and opportunities. IEEE Access 2020, 8, 34564–34584. [Google Scholar] [CrossRef]
- Pitla, S.; Bajwa, S.; Bhusal, S.; Brumm, T.; Brown-Brandl, T.M.; Buckmaster, D.R.; Condotta, I.; Fulton, J.; Janzen, T.J.; Karkee, M.; et al. Ground and Aerial Robots for Agricultural Production: Opportunities and Challenges; CAST: Ames, IA, USA, 2020. [Google Scholar]
- Driessen, C.; Heutinck, L.F. Cows desiring to be milked? Milking robots and the co-evolution of ethics and technology on Dutch dairy farms. Agric. Hum. Values 2015, 32, 3–20. [Google Scholar] [CrossRef]
- Boogaard, B.K.; Bock, B.B.; Oosting, S.J.; Kroch, E. Visiting a farm: An exploratory study of the social construction of animal farming in Norway and the Netherlands based on sensory perception. Int. J. Sociol. Agric. Food 2010, 17, 24–50. [Google Scholar]
- Putjaika, N.; Phusae, S.; Chen-Im, A.; Phunchongharn, P.; Akkarajitsakul, K. A control system in an intelligent farming by using arduino technology. In Proceedings of the 2016 Fifth ICT International Student Project Conference (ICT-ISPC), Nakhonpathom, Thailand, 27–28 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 53–56. [Google Scholar]
- Srivastava, A.; Vijay, S.; Negi, A.; Shrivastava, P.; Singh, A. DTMF based intelligent farming robotic vehicle: An ease to farmers. In Proceedings of the 2014 International Conference on Embedded Systems (ICES), Coimbatore, India, 3–5 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 206–210. [Google Scholar]
- Shandilya, U.; Khanduja, V. Intelligent Farming System With Weather Forecast Support and Crop Prediction. In Proceedings of the 2020 5th International Conference on Computing, Communication and Security (ICCCS), Patna, India, 14–16 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Turner, L.; Udal, M.; Larson, B.; Shearer, S. Monitoring cattle behavior and pasture use with GPS and GIS. Can. J. Anim. Sci. 2000, 80, 405–413. [Google Scholar] [CrossRef]
- Maroto-Molina, F.; Navarro-García, J.; Príncipe-Aguirre, K.; Gómez-Maqueda, I.; Guerrero-Ginel, J.E.; Garrido-Varo, A.; Pérez-Marín, D.C. A Low-Cost IoT-Based System to Monitor the Location of a Whole Herd. Sensors 2019, 19, 2298. [Google Scholar] [CrossRef] [Green Version]
- McGranahan, D.A.; Geaumont, B.; Spiess, J.W. Assessment of a livestock GPS collar based on an open-source datalogger informs best practices for logging intensity. Ecol. Evol. 2018, 8, 5649–5660. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.; Trotter, M.; Knight, C.; Thomas, M. Use of GPS tracking collars and accelerometers for rangeland livestock production research. J. Anim. Sci. 2017, 95, 360. [Google Scholar] [CrossRef] [Green Version]
- Polojärvi, K.; Colpaert, A.; Matengu, K.; Kumpula, J. GPS collars in studies of cattle movement: Cases of northeast Namibia and north Finland. In Engineering Earth; Springer: Berlin/Heidelberg, Germany, 2011; pp. 173–187. [Google Scholar]
- Bebe, F.N.; Hutchens, T.; Andries, K.M.; Bates, K.J.; Gipson, T.; Evans, M. Meat Goats in Hillside Pastures: Control of Undesirable Plant Species and GPS Collar Determination of Activity Patterns. J. Ky. Acad. Sci. 2015, 75, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Ungar, E.; Nevo, Y.; Baram, H.; Arieli, A. Evaluation of the IceTag leg sensor and its derivative models to predict behaviour, using beef cattle on rangeland. J. Neurosci. Methods 2018, 300, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Panckhurst, B.; Brown, P.; Payne, K.; Molteno, T.C. Solar-powered sensor for continuous monitoring of livestock position. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Collins, G.H.; Petersen, S.L.; Carr, C.A.; Pielstick, L. Testing VHF/GPS collar design and safety in the study of free-roaming horses. PloS ONE 2014, 9, e103189. [Google Scholar] [CrossRef]
- Vaughan, R.; Sumpter, N.; Henderson, J.; Frost, A.; Cameron, S. Experiments in automatic flock control. Robot. Auton. Syst. 2000, 31, 109–117. [Google Scholar] [CrossRef]
- Nardi, S.; Mazzitelli, F.; Pallottino, L. A game theoretic robotic team coordination protocol for intruder herding. IEEE Robot. Autom. Lett. 2018, 3, 4124–4131. [Google Scholar] [CrossRef]
- Harmati, I.; Skrzypczyk, K. Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework. Robot. Auton. Syst. 2009, 57, 75–86. [Google Scholar] [CrossRef]
- Paranjape, A.A.; Chung, S.J.; Kim, K.; Shim, D.H. Robotic herding of a flock of birds using an unmanned aerial vehicle. IEEE Trans. Robot. 2018, 34, 901–915. [Google Scholar] [CrossRef] [Green Version]
- Gade, S.; Paranjape, A.A.; Chung, S.J. Herding a flock of birds approaching an airport using an unmanned aerial vehicle. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, USA, 5–9 January 2015; p. 1540. [Google Scholar]
- Gade, S.; Paranjape, A.A.; Chung, S.J. Robotic herding using wavefront algorithm: Performance and stability. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA, 4–8 January 2016; p. 1378. [Google Scholar]
- Obermeyer, K. Path planning for a UAV performing reconnaissance of static ground targets in terrain. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Chicago, IL, USA, 10–13 August 2009; p. 5888. [Google Scholar]
- Cevik, P.; Kocaman, I.; Akgul, A.S.; Akca, B. The small and silent force multiplier: A swarm UAV—Electronic attack. J. Intell. Robot. Syst. 2013, 70, 595–608. [Google Scholar] [CrossRef]
- Christiansen, M.P.; Laursen, M.S.; Jørgensen, R.N.; Skovsen, S.; Gislum, R. Designing and testing a UAV mapping system for agricultural field surveying. Sensors 2017, 17, 2703. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Teizer, J. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Autom. Constr. 2014, 41, 1–14. [Google Scholar] [CrossRef]
- Lagkas, T.; Argyriou, V.; Bibi, S.; Sarigiannidis, P. UAV IoT framework views and challenges: Towards protecting drones as “Things”. Sensors 2018, 18, 4015. [Google Scholar] [CrossRef] [Green Version]
- Mademlis, I.; Mygdalis, V.; Nikolaidis, N.; Montagnuolo, M.; Negro, F.; Messina, A.; Pitas, I. High-level multiple-UAV cinematography tools for covering outdoor events. IEEE Trans. Broadcast. 2019, 65, 627–635. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Optimal transport theory for cell association in UAV-enabled cellular networks. IEEE Commun. Lett. 2017, 21, 2053–2056. [Google Scholar] [CrossRef]
- Haidari, L.A.; Brown, S.T.; Ferguson, M.; Bancroft, E.; Spiker, M.; Wilcox, A.; Ambikapathi, R.; Sampath, V.; Connor, D.L.; Lee, B.Y. The economic and operational value of using drones to transport vaccines. Vaccine 2016, 34, 4062–4067. [Google Scholar] [CrossRef] [Green Version]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Jurak, T.; Bajer, J.; Jilek, A.; Bares, M.; Silinger, K.; Sedlacek, T. Pros and Cons Analysis of a Flying-wing and a Canard Conceptions for a Special Purpose UAV in High Altitude. In Proceedings of the 2019 4th Technology Innovation Management and Engineering Science International Conference (TIMES-iCON), Bangkok, Thailand, 11–13 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Delmerico, J.; Mueggler, E.; Nitsch, J.; Scaramuzza, D. Active autonomous aerial exploration for ground robot path planning. IEEE Robot. Autom. Lett. 2017, 2, 664–671. [Google Scholar] [CrossRef] [Green Version]
- Loizou, S.G.; Kumar, V. Biologically inspired bearing-only navigation and tracking. In Proceedings of the 2007 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1386–1391. [Google Scholar]
- Bekris, K.E.; Argyros, A.A.; Kavraki, L.E. Angle-based methods for mobile robot navigation: Reaching the entire plane. In Proceedings of the IEEE International Conference on Robotics and Automation, 2004, Proceedings, ICRA’04, New Orleans, LA, USA, 26 April–1 May 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 3, pp. 2373–2378. [Google Scholar]
- Teimoori, H.; Savkin, A.V. Equiangular navigation and guidance of a wheeled mobile robot based on range-only measurements. Robot. Auton. Syst. 2010, 58, 203–215. [Google Scholar] [CrossRef]
- Matveev, A.S.; Teimoori, H.; Savkin, A.V. Range-only measurements based target following for wheeled mobile robots. Automatica 2011, 47, 177–184. [Google Scholar] [CrossRef]
- Matveev, A.S.; Teimoori, H.; Savkin, A.V. A method for guidance and control of an autonomous vehicle in problems of border patrolling and obstacle avoidance. Automatica 2011, 47, 515–524. [Google Scholar] [CrossRef]
- Matveev, A.S.; Wang, C.; Savkin, A.V. Real-time navigation of mobile robots in problems of border patrolling and avoiding collisions with moving and deforming obstacles. Robot. Auton. Syst. 2012, 60, 769–788. [Google Scholar] [CrossRef]
- Utkin, V.I. Sliding Modes in Control and Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Baek, S.S.; Kwon, H.; Yoder, J.A.; Pack, D. Optimal path planning of a target-following fixed-wing UAV using sequential decision processes. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 2955–2962. [Google Scholar]
- Vanegas, F.; Campbell, D.; Roy, N.; Gaston, K.J.; Gonzalez, F. UAV tracking and following a ground target under motion and localisation uncertainty. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–10. [Google Scholar]
- Li, Y.; Doucette, E.A.; Curtis, J.W.; Gans, N. Ground target tracking and trajectory prediction by UAV using a single camera and 3D road geometry recovery. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1238–1243. [Google Scholar]
- Minaeian, S.; Liu, J.; Son, Y.J. Effective and efficient detection of moving targets from a UAV’s camera. IEEE Trans. Intell. Transp. Syst. 2018, 19, 497–506. [Google Scholar] [CrossRef]
- Price, E.; Lawless, G.; Ludwig, R.; Martinovic, I.; Bülthoff, H.H.; Black, M.J.; Ahmad, A. Deep neural network-based cooperative visual tracking through multiple micro aerial vehicles. IEEE Robot. Autom. Lett. 2018, 3, 3193–3200. [Google Scholar] [CrossRef] [Green Version]
- Hermand, E.; Nguyen, T.W.; Hosseinzadeh, M.; Garone, E. Constrained control of UAVs in geofencing applications. In Proceedings of the 2018 26th Mediterranean Conference on Control and Automation (MED), Zadar, Croatia, 19–22 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 217–222. [Google Scholar]
- Štroner, M.; Urban, R.; Reindl, T.; Seidl, J.; Brouček, J. Evaluation of the georeferencing accuracy of a photogrammetric model using a quadrocopter with onboard GNSS RTK. Sensors 2020, 20, 2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanegas, F.; Gonzalez, F. Enabling UAV navigation with sensor and environmental uncertainty in cluttered and GPS-denied environments. Sensors 2016, 16, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, K.C.; Cho, H.S. A smooth path tracking algorithm for wheeled mobile robots with dynamic constraints. J. Intell. Robot. Syst. 1999, 24, 367–385. [Google Scholar] [CrossRef]
- Li, X.; Savkin, A.V. Networked Unmanned Aerial Vehicles for Surveillance and Monitoring: A Survey. Future Internet 2021, 13, 174. [Google Scholar] [CrossRef]
- Matveev, A.S.; Savkin, A.V. Estimation and Control over Communication Networks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bemporad, A.; Heemels, M.; Johansson, M. Networked Control Systems; Springer: Berlin/Heidelberg, Germany, 2010; Volume 406. [Google Scholar]
- Xia, Y.; Fu, M.; Liu, G.P. Analysis and Synthesis of Networked Control Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 409. [Google Scholar]
- Petersen, I.R.; Ugrinovskii, V.A.; Savkin, A.V. Robust Control Design Using H∞ Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Petersen, I.R.; Savkin, A.V. Robust Kalman Filtering for Signals and Systems with Large Uncertainties; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnanasekera, M.; Katupitiya, J.; Savkin, A.V.; De Silva, A.H.T.E. A Range-Based Algorithm for Autonomous Navigation of an Aerial Drone to Approach and Follow a Herd of Cattle. Sensors 2021, 21, 7218. https://doi.org/10.3390/s21217218
Gnanasekera M, Katupitiya J, Savkin AV, De Silva AHTE. A Range-Based Algorithm for Autonomous Navigation of an Aerial Drone to Approach and Follow a Herd of Cattle. Sensors. 2021; 21(21):7218. https://doi.org/10.3390/s21217218
Chicago/Turabian StyleGnanasekera, Manaram, Jay Katupitiya, Andrey V. Savkin, and A.H.T. Eranga De Silva. 2021. "A Range-Based Algorithm for Autonomous Navigation of an Aerial Drone to Approach and Follow a Herd of Cattle" Sensors 21, no. 21: 7218. https://doi.org/10.3390/s21217218
APA StyleGnanasekera, M., Katupitiya, J., Savkin, A. V., & De Silva, A. H. T. E. (2021). A Range-Based Algorithm for Autonomous Navigation of an Aerial Drone to Approach and Follow a Herd of Cattle. Sensors, 21(21), 7218. https://doi.org/10.3390/s21217218