Social Robots for Evaluating Attention State in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Social Robot
2.3. Modified Sustained Attention to Response Task
2.4. Questionnaires
2.5. Procedure
2.6. Statistical Analyses
3. Results
3.1. SART Performance
3.2. Self-Reported Attentional Control
3.3. Relationships between Objective and Subjective Performances of Sustained Attention
4. Discussion
4.1. Strategic Shift in Sustained Attention by Older Adults
4.2. Evaluation of Sustained Attention in Older Adults
4.3. Social Robots for Older Adults’ Cognitive Evaluation
4.4. Using the Tablet as an Extension Device
4.5. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs. Population Division (2020). World Population Ageing 2019 (ST/ESA/SER.A/444); United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2020. [Google Scholar]
- Bassett, R.; Bourbonnais, V.; McDowell, I. Living Long and Keeping Well: Elderly Canadians Account for Success in Aging. Can. J. Aging. 2007, 26, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Rand, D.; Lee Ben-Haim, K.; Malka, R.; Portnoy, S. Development of Internet-Based Tasks for the Executive Function Performance Test. Am. J. Occup. Ther. 2018, 72, 7202205060p1–7202205060p7. [Google Scholar] [CrossRef] [PubMed]
- Yanko, M.R.; Spalek, T.M. Driving with the Wandering Mind: The Effect That Mind-Wandering Has on Driving Performance. Hum. Factors 2014, 56, 260–269. [Google Scholar] [CrossRef]
- Yang, G.; Pang, Z.; Jamal Deen, M.; Dong, M.; Zhang, Y.T.; Lovell, N.; Rahmani, A.M. Homecare Robotic Systems for Healthcare 4.0: Visions and Enabling Technologies. IEEE J. Biomed. Heal. Inform. 2020, 24, 2535–2549. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Hao, Y.; Hwang, K.; Wang, L.; Wang, L. Disease Prediction by Machine Learning Over Big Data from Healthcare Communities. IEEE Access 2017, 5, 8869–8879. [Google Scholar] [CrossRef]
- Okoro, C.A.; Hollis, N.D.; Cyrus, A.C.; Griffin-Blake, S. Prevalence of Disabilities and Health Care Access by Disability Status and Type Among Adults—United States, 2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabbagh, M.N.; Boada, M.; Borson, S.; Chilukuri, M.; Dubois, B.; Ingram, J.; Iwata, A.; Porsteinsson, A.P.; Possin, K.L.; Rabinovici, G.D.; et al. Early Detection of Mild Cognitive Impairment (MCI) in Primary Care. J. Prev. Alzheimer’s Dis. 2020, 7, 165–170. [Google Scholar] [CrossRef]
- Chang, Y.L.; Chao, R.Y.; Hsu, Y.C.; Chen, T.F.; Tseng, W.Y.I. White Matter Network Disruption and Cognitive Correlates Underlying Impaired Memory Awareness in Mild Cognitive Impairment. NeuroImage Clin. 2021, 30, 102626. [Google Scholar] [CrossRef]
- Feil-Seifer, D.; Matarić, M.J. Defining Socially Assistive Robotics. In Proceedings of the 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, Chicago, IL, USA, 28 June–1 July 2005; pp. 465–468. [Google Scholar] [CrossRef] [Green Version]
- Robinson, H.; MacDonald, B.; Broadbent, E. The Role of Healthcare Robots for Older People at Home: A Review. Int. J. Soc. Robot. 2014, 6, 575–591. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Luoa, D.-H.; Huang, T.-R.; Goh, J.O.S.; Yeh, S.-L.; Fu, L.-C. Identifying Mild Cognitive Impairment by Using Human–Robot Interactions. 2021. submitted for publication. [Google Scholar]
- Takaeda, K.; Kamimura, T.; Inoue, T.; Nishiura, Y. Reliability and Acceptability of Using a Social Robot to Carry out Cognitive Tests for Community-Dwelling Older Adults. Geriatr. Gerontol. Int. 2019, 19, 552–556. [Google Scholar] [CrossRef] [PubMed]
- DI Nuovo, A.; Varrasi, S.; Conti, D.; Bamsforth, J.; Lucas, A.; Soranzo, A.; McNamara, J. Usability Evaluation of a Robotic System for Cognitive Testing. In Proceedings of the 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Daegu, Korea, 11–14 March 2019; pp. 588–589. [Google Scholar] [CrossRef]
- Mead, R.; Matarić, M.J. Autonomous Human–Robot Proxemics: Socially Aware Navigation Based on Interaction Potential. Auton. Robots 2016, 41, 1189–1201. [Google Scholar] [CrossRef]
- Zsiga, K.; Tóth, A.; Pilissy, T.; Péter, O.; Dénes, Z.; Fazekas, G. Evaluation of a Companion Robot Based on Field Tests with Single Older Adults in Their Homes. Assist. Technol. 2018, 30, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.R.; Liu, Y.W.; Hsu, S.M.; Goh, J.O.S.; Chang, Y.L.; Yeh, S.L.; Fu, L.C. Asynchronously Embedding Psychological Test Questions into Human–Robot Conversations for User Profiling. Int. J. Soc. Robot. 2021, 13, 1359–1368. [Google Scholar] [CrossRef]
- Manh Do, H.; Sheng, W.; Harrington, E.E.; Bishop, A.J. Clinical Screening Interview Using a Social Robot for Geriatric Care. IEEE Trans. Autom. Sci. Eng. 2020, 18, 1229–1242. [Google Scholar] [CrossRef]
- Bogdanova, Y.; Yee, M.K.; Ho, V.T.; Cicerone, K.D. Computerized Cognitive Rehabilitation of Attention and Executive Function in Acquired Brain Injury: A Systematic Review. J. Head Trauma Rehabil. 2016, 31, 419–433. [Google Scholar] [CrossRef] [Green Version]
- Kueider, A.M.; Parisi, J.M.; Gross, A.L.; Rebok, G.W. Computerized Cognitive Training with Older Adults: A Systematic Review. PLoS ONE 2012, 7, e40588. [Google Scholar] [CrossRef] [Green Version]
- O’Halloran, A.M.; Pénard, N.; Galli, A.; Fan, C.; Robertson, I.H.; Kenny, R. Falls and Falls Efficacy: The Role of Sustained Attention in Older Adults. BMC Geriatr. 2011, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Loughrey, D.G.; Mihelj, E.; Lawlor, B.A. Age-Related Hearing Loss Associated with Altered Response Efficiency and Variability on a Visual Sustained Attention Task. Aging Neuropsychol. Cogn. 2021, 28, 1–25. [Google Scholar] [CrossRef]
- Wooten, T.; Ferland, T.; Poole, V.; Milberg, W.; McGlinchey, R.; DeGutis, J.; Esterman, M.; Leritz, E. Metabolic Risk in Older Adults Is Associated with Impaired Sustained Attention. Neuropsychology 2019, 33, 947–955. [Google Scholar] [CrossRef]
- Fortenbaugh, F.C.; Degutis, J.; Esterman, M. Recent Theoretical, Neural, and Clinical Advances in Sustained Attention Research. Ann. N. Y. Acad. Sci. 2017, 1396, 70–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, I.H.; Manly, T.; Andrade, J.; Baddeley, B.T.; Yiend, J. “Oops!”: Performance Correlates of Everyday Attentional Failures in Traumatic Brain Injured and Normal Subjects. Neuropsychologia 1997, 35, 747–758. [Google Scholar] [CrossRef]
- Carriere, J.S.A.; Cheyne, J.A.; Solman, G.J.F.; Smilek, D. Age Trends for Failures of Sustained Attention. Psychol. Aging 2010, 25, 569–574. [Google Scholar] [CrossRef]
- McVay, J.C.; Meier, M.E.; Touron, D.R.; Kane, M.J. Aging Ebbs the Flow of Thought: Adult Age Differences in Mind Wandering, Executive Control, and Self-Evaluation. Acta Psychol. 2013, 142, 136–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, J.D.; Balota, D.A. Mind-Wandering in Younger and Older Adults: Converging Evidence from the Sustained Attention to Response Task and Reading for Comprehension. Psychol. Aging 2012, 27, 106–119. [Google Scholar] [CrossRef] [Green Version]
- Staub, B.; Doignon-Camus, N.; Bacon, E.; Bonnefond, A. Investigating Sustained Attention Ability in the Elderly by Using Two Different Approaches: Inhibiting Ongoing Behavior versus Responding on Rare Occasions. Acta Psychol. 2014, 146, 51–57. [Google Scholar] [CrossRef]
- Zavagnin, M.; Borella, E.; De Beni, R. When the Mind Wanders: Age-Related Differences between Young and Older Adults. Acta Psychol. 2014, 145, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Fountain-Zaragoza, S.; Puccetti, N.A.; Whitmoyer, P.; Prakash, R.S. Aging and Attentional Control: Examining the Roles of Mind-Wandering Propensity and Dispositional Mindfulness. J. Int. Neuropsychol. Soc. 2018, 24, 876–888. [Google Scholar] [CrossRef]
- Frank, D.J.; Nara, B.; Zavagnin, M.; Touron, D.R.; Kane, M.J. Validating Older Adults’ Reports of Less Mind-Wandering: An Examination of Eye Movements and Dispositional Influences. Psychol. Aging 2015, 30, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.D.; Balota, D.A.; Duchek, J.M.; Head, D. White Matter Integrity and Reaction Time Intraindividual Variability in Healthy Aging and Early-Stage Alzheimer Disease. Neuropsychologia 2012, 50, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Endrass, T.; Schreiber, M.; Kathmann, N. Speeding up Older Adults: Age-Effects on Error Processing in Speed and Accuracy Conditions. Biol. Psychol. 2012, 89, 426–432. [Google Scholar] [CrossRef]
- Falkenstein, M.; Hoormann, J.; Hohnsbein, J. Changes of Error-Related ERPs with Age. Exp. Brain Res. 2001, 138, 258–262. [Google Scholar] [CrossRef]
- Hoffmann, S.; Falkenstein, M. Aging and Error Processing: Age Related Increase in the Variability of the Error-Negativity Is Not Accompanied by Increase in Response Variability. PLoS ONE 2011, 6, e17482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathalon, D.H.; Bennett, A.; Askari, N.; Gray, E.M.; Rosenbloom, M.J.; Ford, J.M. Response-Monitoring Dysfunction in Aging and Alzheimer’s Disease: An Event-Related Potential Study. Neurobiol. Aging 2003, 24, 675–685. [Google Scholar] [CrossRef]
- Fortenbaugh, F.C.; Degutis, J.; Germine, L.; Wilmer, J.B.; Grosso, M.; Russo, K.; Esterman, M. Sustained Attention across the Life Span in a Sample of 10,000: Dissociating Ability and Strategy. Psychol. Sci. 2015, 26, 1497–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carriere, J.S.A.; Cheyne, J.A.; Smilek, D. Everyday Attention Lapses and Memory Failures: The Affective Consequences of Mindlessness. Conscious. Cogn. 2008, 17, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Cheyne, J.A.; Carriere, J.S.A.; Smilek, D. Absent-Mindedness: Lapses of Conscious Awareness and Everyday Cognitive Failures. Conscious. Cogn. 2006, 15, 578–592. [Google Scholar] [CrossRef] [Green Version]
- Smallwood, J.; McSpadden, M.; Schooler, J.W. The Lights Are on but No One’s Home: Meta-Awareness and the Decoupling of Attention When the Mind Wanders. Psychon. Bull. Rev. 2007, 14, 527–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fountain-Zaragoza, S.; Samimy, S.; Rosenberg, M.D.; Prakash, R.S. Connectome-Based Models Predict Attentional Control in Aging Adults. Neuroimage 2019, 186, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Allan Cheyne, J.; Solman, G.J.F.; Carriere, J.S.A.; Smilek, D. Anatomy of an Error: A Bidirectional State Model of Task Engagement/Disengagement and Attention-Related Errors. Cognition 2009, 111, 98–113. [Google Scholar] [CrossRef]
- Helton, W.S.; Head, J.; Russell, P.N. Reliable- and Unreliable-Warning Cues in the Sustained Attention to Response Task. Exp. Brain Res. 2011, 209, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Hester, R.; Fassbender, C.; Garavan, H. Individual Differences in Error Processing: A Review and Reanalysis of Three Event-Related FMRI Studies Using the GO/NOGO Task. Cereb. Cortex 2004, 14, 986–994. [Google Scholar] [CrossRef] [Green Version]
- Liu-Ambrose, T.; Donaldson, M.G.; Ahamed, Y.; Graf, P.; Cook, W.L.; Close, J.; Lord, S.R.; Khan, K.M. Otago Home-Based Strength and Balance Retraining Improves Executive Functioning in Older Fallers: A Randomized Controlled Trial. J. Am. Geriatr. Soc. 2008, 56, 1821–1830. [Google Scholar] [CrossRef]
- Lord, S.R.; Fitzpatrick, R.C. Choice Stepping Reaction Time: A Composite Measure of Falls Risk in Older People. J. Gerontol.—Ser. A Biol. Sci. Med. Sci. 2001, 56, 627–632. [Google Scholar] [CrossRef]
- McGough, E.L.; Kelly, V.E.; Logsdon, R.G.; McCurry, S.; Cochrane, B.B.; Engel, J.M.; Teri, L. Associations between Physical Performance and Executive Function in Older Adults with Mild Cognitive Impairment: Gait Speed and the Timed “Up & Go” Test. Phys. Ther. 2011, 91, 1198–1207. [Google Scholar] [CrossRef]
- Setti, A.; Burke, K.E.; Kenny, R.A.; Newell, F.N. Is Inefficient Multisensory Processing Associated with Falls in Older People? Exp. Brain Res. 2011, 209, 375–384. [Google Scholar] [CrossRef]
- Tsai, P.S.; Wang, S.Y.; Wang, M.Y.; Su, C.T.; Yang, T.T.; Huang, C.J.; Fang, S.C. Psychometric Evaluation of the Chinese Version of the Pittsburgh Sleep Quality Index (CPSQI) in Primary Insomnia and Control Subjects. Qual. Life Res. 2005, 14, 1943–1952. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-H.; Lin, C.-L.; Huang, C.-L. Psychometric Properties of the Chinese Translation of Mindful Attention Awareness Scale (CMAAS). Psychol. Test. 2011, 58, 235–260. [Google Scholar]
- Anderson, N.D. Teaching Signal Detection Theory with Pseudoscience. Front. Psychol. 2015, 6, 762. [Google Scholar] [CrossRef] [Green Version]
- Snodgrass, J.G.; Corwin, J. Pragmatics of Measuring Recognition Memory: Applications to Dementia and Amnesia. J. Exp. Psychol. 1988, 117, 34–50. [Google Scholar] [CrossRef]
- Carciofo, R.; Du, F.; Song, N.; Zhang, K. Mind Wandering, Sleep Quality, Affect and Chronotype: An Exploratory Study. PLoS ONE 2014, 9, e91285. [Google Scholar] [CrossRef] [Green Version]
- Potterid, L.M.; Grealy, M.A. Aging and the Prevalence of “ironic” Action Errors under Avoidant Instruction. PLoS ONE 2019, 14, e0213340. [Google Scholar] [CrossRef]
- Smilek, D.; Carriere, J.S.A.; Cheyne, J.A. Failures of Sustained Attention in Life, Lab, and Brain: Ecological Validity of the SART. Neuropsychologia 2010, 48, 2564–2570. [Google Scholar] [CrossRef] [PubMed]
- Vallesi, A.; Tronelli, V.; Lomi, F.; Pezzetta, R. Age Differences in Sustained Attention Tasks: A Meta-Analysis. Psychon. Bull. Rev. 2021, 1–21. [Google Scholar] [CrossRef]
- Gyurkovics, M.; Balota, D.A.; Jackson, J.D. Mind-Wandering in Healthy Aging and Early Stage Alzheimer’s Disease. Neuropsychology 2018, 32, 89–101. [Google Scholar] [CrossRef]
- Varrasi, S.; Di Nuovo, S.; Conti, D.; Di Nuovo, A. A Social Robot for Cognitive Assessment. In Proceedings of the HRI 18: Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, Il, USA, 5–8 March 2018; pp. 269–270. [Google Scholar] [CrossRef]
- McAvinue, L.P.; Habekost, T.; Johnson, K.A.; Kyllingsbæk, S.; Vangkilde, S.; Bundesen, C.; Robertson, I.H. Sustained Attention, Attentional Selectivity, and Attentional Capacity across the Lifespan. Atten. Percept. Psychophys. 2012, 74, 1570–1582. [Google Scholar] [CrossRef] [Green Version]
- Berardi, A.; Parasuraman, R.; Haxby, J.V. Overall Vigilance and Sustained Attention Decrements in Healthy Aging. Exp. Aging Res. 2001, 27, 19–39. [Google Scholar] [CrossRef]
- Nagamatsu, L.S.; Kam, J.W.Y.; Liu-Ambrose, T.; Chan, A.; Handy, T.C. Mind-Wandering and Falls Risk in Older Adults. Psychol. Aging 2013, 28, 685–691. [Google Scholar] [CrossRef] [Green Version]
- Masson, O.; Baratgin, J.; Jamet, F. NAO Robot as Experimenter: Social Cues Emitter and Neutralizer to Bring New Results in Experimental Psychology. In Proceedings of the 2017 International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, 5–7 July 2017; pp. 256–264. [Google Scholar] [CrossRef]
- Heerink, M.; Kröse, B.; Evers, V.; Wielinga, B. The Influence of Social Presence on Enjoyment and Intention to Use of a Robot and Screen Agent by Elderly Users. In Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive Communication; Technische Universität München: Munich, Germany, 2008. [Google Scholar] [CrossRef] [Green Version]
- Wada, K.; Shibata, T.; Saito, T.; Tanie, K. Effects of Robot-Assisted Activity for Elderly People and Nurses at a Day Service Center. Proc. IEEE 2004, 92, 1780–1788. [Google Scholar] [CrossRef]
- Chen, Y.C.; Gamborino, E.; Fu, L.C.; Yueh, H.P.; Yeh, S.L. Social Presence in Evaluations for a Humanoid Robot and Its Effect on Children-Robot Relationship. In Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 1419, pp. 191–199. [Google Scholar] [CrossRef]
- Lo, S.Y.; Lai, Y.Y.; Liu, J.C.; Yeh, S.L. Robots and Sustainability: Robots as Persuaders to Promote Recycling. Int. J. Soc. Robot 2021, in press. [Google Scholar]
- Bradwell, H.L.; Aguiar Noury, G.E.; Edwards, K.J.; Winnington, R.; Thill, S.; Jones, R.B. Design Recommendations for Socially Assistive Robots for Health and Social Care Based on a Large Scale Analysis of Stakeholder Positions: Social Robot Design Recommendations. Heal. Policy Technol. 2021, 10, 100544. [Google Scholar] [CrossRef]
- Vaportzis, E.; Clausen, M.G.; Gow, A.J. Older Adults Experiences of Learning to Use Tablet Computers: A Mixed Methods Study. Front. Psychol. 2018, 9, 1631. [Google Scholar] [CrossRef]
- Anderson, M.; Perrin, A. Tech Adoption Climbs Among Older Adults; Pew Research Center for Internet & Technology: Washington, DC, USA, 2017; pp. 1–22. [Google Scholar]
- Tsai, T.C.; Hsu, Y.L.; Ma, A.I.; King, T.; Wu, C.H. Developing a Telepresence Robot for Interpersonal Communication with the Elderly in a Home Environment. Telemed. e-Health 2007, 13, 407–424. [Google Scholar] [CrossRef]
- Campos-Magdaleno, M.; Leiva, D.; Pereiro, A.X.; Lojo-Seoane, C.; Mallo, S.C.; Facal, D.; Juncos-Rabadán, O. Changes in Visual Memory in Mild Cognitive Impairment: A Longitudinal Study with CANTAB. Psychol. Med. 2021, 51, 2465–2475. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Lee, H.-H.; Shih, C.-Y.; Chen, Z.-L.; Beh, W.-K.; Yeh, S.-L.; Wu, A.-Y. An Effective Entropy-Assisted Mind-Wandering Detection System with EEG Signals Based on MM-SART Database. arXiv 2020, arXiv:2005.12076. [Google Scholar]
- Maffei, L.; Picano, E.; Andreassi, M.G.; Angelucci, A.; Baldacci, F.; Baroncelli, L.; Begenisic, T.; Bellinvia, P.F.; Berardi, N.; Biagi, L.; et al. Randomized Trial on the Effects of a Combined Physical/Cognitive Training in Aged MCI Subjects: The Train the Brain Study. Sci. Rep. 2017, 7, 39471. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, L.; Maselli, M.; Esposito, R.; Castro, E.; Mancioppi, G.; Cecchi, F.; Laschi, C.; Ottino, S.; Rossi, C.; Pinori, F.; et al. Foot Inertial Sensing for Combined Cognitive-Motor Exercise of the Sustained Attention Domain. IEEE Trans. Biomed. Eng. 2019, 66, 2413–2420. [Google Scholar] [CrossRef] [PubMed]
- Hargittai, E.; Piper, A.M.; Morris, M.R. From Internet Access to Internet Skills: Digital Inequality among Older Adults. Univers. Access Inf. Soc. 2019, 18, 881–890. [Google Scholar] [CrossRef]
- Hänninen, R.; Pajula, L.; Korpela, V.; Taipale, S. Individual and Shared Digital Repertoires–Older Adults Managing Digital Services. Inf. Commun. Soc. 2021, 1–16. [Google Scholar] [CrossRef]
- Graham, S.A.; Stein, N.; Shemaj, F.; Branch, O.H.; Paruthi, J.; Kanick, S.C. Older Adults Engage with Personalized Digital Coaching Programs at Rates That Exceed Those of Younger Adults. Front. Digit. Heal. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Shin, D.H.; Choo, H. Modeling the Acceptance of Socially Interactive Robotics: Social Presence in Human-Robot Interaction. Interact. Stud. 2011, 12, 430–460. [Google Scholar] [CrossRef]
- Chien, S.-E.; Chu, L.; Lee, H.-H.; Yang, C.-C.; Lin, F.-H.; Yang, P.-L.; Wang, T.-M.; Yeh, S.-L. Age Difference in Perceived Ease of Use, Curiosity, and Implicit Negative Attitude toward Robots. ACM Trans. Human-Robot Interact. 2019, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.; Chen, H.W.; Cheng, P.Y.; Ho, P.; Weng, I.T.; Yang, P.L.; Chien, S.E.; Tu, Y.C.; Yang, C.C.; Wang, T.M.; et al. Identifying Features That Enhance Older Adults’ Acceptance of Robots: A Mixed Methods Study. Gerontology 2019, 65, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Gray, K.; Wegner, D.M. Feeling Robots and Human Zombies: Mind Perception and the Uncanny Valley. Cognition 2012, 125, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Andriella, A.; Alenyà, G.; Hernández-Farigola, J.; Torras, C. Deciding the Different Robot Roles for Patient Cognitive Training. Int. J. Hum. Comput. Stud. 2018, 117, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Gamborino, E.; Yueh, H.-P.; Lin, W.; Yeh, S.-L.; Fu, L.-C. Mood Estimation as a Social Profile Predictor in an Autonomous, Multi-Session, Emotional Support Robot for Children. In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Gamborino, E.; Herrera Ruiz, A.; Wang, J.-F.; Tseng, T.-Y.; Yeh, S.-L.; Fu, L.-C. Towards Effective Robot-Assisted Photo Reminiscence: Personalizing Interactions Through Visual Understanding and Inferring BT—Cross-Cultural Design. Applications in Cultural Heritage, Tourism, Autonomous Vehicles, and Intelligent Agents; Rau, P.-L.P., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 335–349. [Google Scholar]
Older Adults | Younger Adults | |||||
---|---|---|---|---|---|---|
Range | Mean | SD | Range | Mean | SD | |
Age (years old) | 65–80 | 71.89 | 4.46 | 19–24 | 21.00 | 1.31 |
Education (years) | 1–21 | 13.84 | 4.54 | 12–17 | 14.96 | 1.43 |
MMAS | 46–87 | 66.53 | 10.23 | 41–85 | 59.61 | 10.04 |
PSQI | 1–14 | 4.89 | 2.71 | 4–13 | 6.96 | 2.62 |
Pre-task sleepiness | 0–1 | 0.32 | 0.48 | 0–2 | 0.83 | 0.65 |
SART Indices | Younger Adults Mean (SD) | Older Adults Mean (SD) | Statistics |
---|---|---|---|
EoC (rate) | 0.21 (0.12) | 0.09 (0.09) | F(1,37) = 10.06, p = 0.003, ηp² = 0.21 |
Omission (rate) | 0.002 (0.003) | 0.05 (0.06) | F(1,37) = 12.27, p = 0.003, ηp² = 0.25 |
RT (ms) | 473.99 (49.20) | 685.51 (97.42) | F(1,37) = 51.41, p < 0.00, ηp² = 0.58 |
β | 62.79 (42.40) | 6.76 (14.10) | F(1,37) = 19.51, p < 0.00, ηp² = 0.35 |
Thought Probes | Younger Adults Mean (SD) | Older Adults Mean (SD) | Statistics |
---|---|---|---|
On-task (rate) | 0.59 (0.26) | 0.85 (0.20) | F(1,37) = 9.57, p = 0.004, ηp² = 0.21 |
Distracted (rate) | 0.16 (0.16) | 0.10 (0.17) | F(1,37) = 0.79, p = 0.38, ηp² = 0.02 |
MW (rate) | 0.24 (0.19) | 0.04 (0.12) | F(1,37) = 12.56, p = 0.001, ηp² = 0.25 |
Self-rated performance | 3.34 (1.0) | 4.73 (1.13) | F(1,37) = 10.81, p = 0.002, ηp² = 0.23 |
On-Task | Distracted | Mind-Wandering | Self-Rated Performance | |
---|---|---|---|---|
EoC | 0.01 | −0.13 | 0.10 | −0.49 ** |
Omission | 0.32 * | −0.15 | −0.31 * | 0.40 ** |
RT | 0.30 * | −0.06 | −0.37 * | 0.51 ** |
β | −0.11 | −0.03 | 0.18 | −0.39 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Yeh, S.-L.; Huang, T.-R.; Chang, Y.-L.; Goh, J.O.S.; Fu, L.-C. Social Robots for Evaluating Attention State in Older Adults. Sensors 2021, 21, 7142. https://doi.org/10.3390/s21217142
Chen Y-C, Yeh S-L, Huang T-R, Chang Y-L, Goh JOS, Fu L-C. Social Robots for Evaluating Attention State in Older Adults. Sensors. 2021; 21(21):7142. https://doi.org/10.3390/s21217142
Chicago/Turabian StyleChen, Yi-Chen, Su-Ling Yeh, Tsung-Ren Huang, Yu-Ling Chang, Joshua O. S. Goh, and Li-Chen Fu. 2021. "Social Robots for Evaluating Attention State in Older Adults" Sensors 21, no. 21: 7142. https://doi.org/10.3390/s21217142
APA StyleChen, Y.-C., Yeh, S.-L., Huang, T.-R., Chang, Y.-L., Goh, J. O. S., & Fu, L.-C. (2021). Social Robots for Evaluating Attention State in Older Adults. Sensors, 21(21), 7142. https://doi.org/10.3390/s21217142