Effects of Tungsten Disulphide Coating on Tapered Microfiber for Relative Humidity Sensing Applications
Abstract
:1. Introduction
2. Fabrication and Preparation of Tapered Microfiber Sensor
3. Experimental Setup
4. Sensing Mechanism
5. Results and Discussion
5.1. Characterization of Tapered Microfiber
5.2. Structural, Morphological, and Compositional Analysis of WS2
5.3. The Performance of the RH Sensor
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsumoto, A.; Ohba, H.; Toshimitsu, M.; Akaoka, K.; Ruas, A.; Sakka, T.; Wakaida, I. Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser. Spectrochim. Acta—Part B At. Spectrosc. 2018, 142, 37–49. [Google Scholar] [CrossRef]
- Zhao, J.; Li, L.; Zhao, L.; Tang, D.; Shen, D. Cavity-birefringence-dependent h-shaped pulse generation in a thulium-holmium-doped fiber laser. Opt. Lett. 2018, 43, 247. [Google Scholar] [CrossRef] [PubMed]
- Salim, M.A.M.; Ali, N.; Azzuhri, S.R.; Khudus, M.I.M.A.; Jamaludin, J.; Faruki, M.J.; Amiri, I.S. Switchable erbium-doped fiber laser (EDFL) using non-adiabatic microfiber. Opt. Fiber Technol. 2019, 52, 101967. [Google Scholar] [CrossRef]
- He, C.; Fang, J.; Zhang, Y.; Yang, Y.; Yu, J.; Zhang, J.; Guan, H.; Qiu, W.; Wu, P.; Dong, J.; et al. High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane. Opt. Express 2018, 26, 9686–9699. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Li, N. Temperature-independent evanescent wave sensor made of a stress-released silica optical fiber taper. Opt. Fiber Technol. 2017, 36, 237–244. [Google Scholar] [CrossRef]
- Yang, M.; Xiong, X.; He, R.; Luo, Y.; Tang, J.; Dong, J.; Lu, H.; Yu, J.; Guan, H.; Zhang, J.; et al. Halloysite Nanotube-Modified Plasmonic Interface for Highly Sensitive Refractive Index Sensing. ACS Appl. Mater. Interfaces 2018, 10, 5933–5940. [Google Scholar] [CrossRef] [PubMed]
- Polley, N.; Basak, S.; Hass, R.; Pacholski, C. Fiber optic plasmonic sensors: Providing sensitive biosensor platforms with minimal lab equipment. Biosens. Bioelectron. 2019, 132, 368–374. [Google Scholar] [CrossRef]
- Ng, W.P.; Lalam, N.; Dai, X.; Wu, Q.; Fu, Y.Q.; Harrington, P.; Gomes, N.J.; Lu, C. Integrating Radio-Over-Fiber Communication System and BOTDR Sensor System. Sensors 2020, 20, 2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, H.; Jiang, Y.; Ding, J.; Zhang, J.; Zhang, M.; Zhu, Y.; Li, H. Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection. Sens. Actuators B Chem. 2018, 254, 239–247. [Google Scholar] [CrossRef]
- Zhou, N.; Wang, P.; Shi, Z.X.; Gao, Y.X.; Yang, Y.X.; Wang, Y.P.; Xie, Y.; Cai, D.W.; Guo, X.; Zhang, L.; et al. Au nanorod–coupled microfiber optical humidity sensors. Opt. Express 2019, 27, 8180. [Google Scholar] [CrossRef]
- Johari, M.A.M.; Khudus, M.I.M.A.; Jali, M.H.; Maslinda, M.S.; Ali, U.U.M.; Harun, S.W.; Zaidan, A.H.; Apsari, R.; Yasin, M. Effect of tapering diameters with microbottle resonator for formaldehyde (CH2O) liquid sensing. Sens. Bio-Sens. Res. 2019, 25, 100292. [Google Scholar] [CrossRef]
- Roriz, P.; Silva, S.; Frazão, O.; Novais, S. Optical fiber temperature sensors and their biomedical applications. Sensors 2020, 20, 2113. [Google Scholar] [CrossRef] [Green Version]
- Jivraj, J.; Chen, C.; Huang, Y.; Ramjist, J.; Lu, Y.; Vuong, B.; Gu, X.; Yang, V.X.D. Smart laser osteotomy: Integrating a pulsed 1064nm fiber laser into the sample arm of a fiber optic 1310nm OCT system for ablation monitoring. Biomed. Opt. Express 2018, 9, 6374. [Google Scholar] [CrossRef] [PubMed]
- Idris, S.; Azeman, N.H.; Noor Azmy, N.A.; Ratnam, C.T.; Mahdi, M.A.; Ahmad, A.A. Gamma irradiated Py/PVA for GOx immobilization on tapered optical fiber for glucose biosensing. Sens. Actuators B Chem. 2018, 273, 1404–1412. [Google Scholar] [CrossRef]
- Spillman, W.B.; McMahon, D.H. Frustrated-total-internal-reflection multimode fiber-optic hydrophone. Appl. Opt. 1980, 19, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, G.; Jung, Y.; Renna, F. Optical fiber microwires and nanowires manufactured by modified flame brushing technique: Properties and applications. Front. Optoelectron. China 2010, 3, 61–66. [Google Scholar] [CrossRef]
- Jasim, A.A.; Harun, S.W.; Arof, H.; Ahmad, H. Inline Microfiber Mach–Zehnder Interferometer for High Temperature Sensing. IEEE Sens. J. 2013, 13, 626–628. [Google Scholar] [CrossRef]
- Wu, X.; Tong, L. Optical microfibers and nanofibers. Nanophotonics 2013, 2, 407–428. [Google Scholar] [CrossRef]
- Jali, M.H.; Rahim, H.R.A.; Johari, M.A.M.; Hamid, S.S.; Yusof, H.H.M.; Thokchom, S.; Wang, P.; Harun, S.W. Optical characterization of different waist diameter on microfiber loop resonator humidity sensor. Sens. Actuators A Phys. 2019, 285, 200–209. [Google Scholar] [CrossRef]
- Kowsari, A.; Ahmadi, V.; Darvish, G.; Moravvej-Farshi, M.K. Dynamic analysis of optical microfiber coil resonators. Appl. Opt. 2016, 55, 6680. [Google Scholar] [CrossRef]
- Han, Y.-G. Relative humidity sensors based on microfiber knot resonators—A review. Sensors 2019, 19, 5196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pongruengkiat, W.; Pechprasarn, S. Whispering-gallery mode resonators for detecting cancer. Sensors 2017, 17, 2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Guan, H.; Zhu, W.; Yu, J.; Lu, H.; Qiu, W.; Dong, J.; Zhang, J.; Luo, Y.; Chen, Z. All light-control-light properties of molybdenum diselenide (MoSe2)-coated-microfiber. Opt. Express 2017, 25, 28536. [Google Scholar] [CrossRef]
- Guan, H.; Xia, K.; Chen, C.; Luo, Y.; Tang, J.; Lu, H.; Yu, J.; Zhang, J.; Zhong, Y.; Chen, Z. Tungsten disulfide wrapped on micro fiber for enhanced humidity sensing. Opt. Mater. Express 2017, 7, 1686. [Google Scholar] [CrossRef]
- Talataisong, W.; Ismaeel, R.; Brambilla, G. A review of microfiber-based temperature sensors. Sensors 2018, 18, 461. [Google Scholar] [CrossRef] [Green Version]
- Rosol, A.H.A.; Mahyuddin, M.B.H.; Jusoh, Z.; Harun, A.S.W. Tungsten disulfide saturable absorber for nanosecond pulses generation. Nonlinear Opt. Quantum Opt. 2019, 51, 161–169. [Google Scholar]
- Xiong, Y.; Chen, H.W.; Zhang, D.W.; Zhou, P. Electronic and Optoelectronic Applications Based on ReS2. Phys. Status Solidi—Rapid Res. Lett. 2019, 13, 1–14. [Google Scholar] [CrossRef]
- Rashid, H.; Ramli, R.; Ahmad, H. Optoelectronic characteristics of tungsten disulphide based visible range photodetector. In Proceedings of the 2019 IEEE 9th International Nanoelectronics Conferences (INEC), Kuching, Malaysia, 3–5 July 2019; pp. 3–7. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, C.; Xia, K.; Peng, S.; Guan, H.; Tang, J.; Lu, H.; Yu, J.; Zhang, J.; Xiao, Y.; et al. Tungsten disulfide (WS2) based all-fiber-optic humidity sensor. Opt. Express 2016, 24, 8956. [Google Scholar] [CrossRef]
- Faruki, M.J.; Ab Razak, M.Z.; Azzuhri, S.R.; Rahman, M.T.; Soltanian, M.R.K.; Brambilla, G.; Rahman, B.M.A.; Grattan, K.T.V.; De La Rue, R.; Ahmad, H. Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement. Mater. Express 2016, 6, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Adnan Zain, H.; Hafiz Jali, M.; Rafis Abdul Rahim, H.; Ashadi Md Johari, M.; Helmi Mohd Yusof, H.; Thokchom, S.; Yasin, M.; Wadi Harun, S. ZnO nanorods coated microfiber loop resonator for relative humidity sensing. Opt. Fiber Technol. 2020, 54, 102080. [Google Scholar] [CrossRef]
- Hazarika, S.J.; Mohanta, D. Inorganic fullerene-type WS2 nanoparticles: Processing, characterization and its photocatalytic performance on malachite green. Appl. Phys. A Mater. Sci. Process. 2017, 123, 381. [Google Scholar] [CrossRef]
- Azzuhri, S.R.; Amiri, I.S.; Zulkhairi, A.S.; Salim, M.A.M.; Razak, M.Z.A.; Khyasudeen, M.F.; Ahmad, H.; Zakaria, R.; Yupapin, P. Application of graphene oxide based Microfiber-Knot resonator for relative humidity sensing. Results Phys. 2018, 9, 1572–1577. [Google Scholar] [CrossRef]
- Sun, L.; Semenova, Y.; Wu, Q.; Liu, D.; Yuan, J.; Sang, X.; Yan, B.; Wang, K.; Yu, C.; Farrell, G. Investigation of humidity and temperature response of a silica gel coated microfiber coupler. IEEE Photonics J. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Berkdemir, A.; Gutiérrez, H.R.; Botello-Méndez, A.R.; Perea-López, N.; Elías, A.L.; Chia, C.I.; Wang, B.; Crespi, V.H.; López-Urías, F.; Charlier, J.C.; et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.Y.; Lee, G. Bin Humidity sensors: A review. Sens. Lett. 2005, 3, 1–15. [Google Scholar] [CrossRef]
- Yusoff, S.F.A.Z.; Lim, C.S.; Azzuhri, S.R.; Ahmad, H.; Zakaria, R. Studies of Ag/TiO2 plasmonics structures integrated in side polished optical fiber used as humidity sensor. Results Phys. 2018, 10, 308–316. [Google Scholar] [CrossRef]
Parameters | 2 µm | 5 µm | 10 µm | |||
---|---|---|---|---|---|---|
Non-Coated MF | Coated MF | Non-Coated MF | Coated MF | Non-Coated MF | Coated MF | |
Linearity (%) | 99.6 | 99.8 | 99.3 | 99.3 | 91.0 | 98.3 |
Sensitivity (dB/% RH) | 0.0615 | 0.0861 | 0.0484 | 0.0484 | 0.0108 | 0.0089 |
Linear Range (% RH) | 45–90 | 45–90 | 45–90 | 45–90 | 45–90 | 45–90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, N.; Azzuhri, S.R.; Johari, M.A.M.; Rashid, H.; Khudus, M.I.M.A.; Razak, M.Z.A.; Chen, Z.; Misran, N.; Arsad, N. Effects of Tungsten Disulphide Coating on Tapered Microfiber for Relative Humidity Sensing Applications. Sensors 2021, 21, 7132. https://doi.org/10.3390/s21217132
Ali N, Azzuhri SR, Johari MAM, Rashid H, Khudus MIMA, Razak MZA, Chen Z, Misran N, Arsad N. Effects of Tungsten Disulphide Coating on Tapered Microfiber for Relative Humidity Sensing Applications. Sensors. 2021; 21(21):7132. https://doi.org/10.3390/s21217132
Chicago/Turabian StyleAli, Norazida, Saaidal Razalli Azzuhri, Md Ashadi Md Johari, Haroon Rashid, Muhammad Imran Mustafa Abdul Khudus, Mohd. Zulhakimi Ab. Razak, Zhe Chen, Norbahiah Misran, and Norhana Arsad. 2021. "Effects of Tungsten Disulphide Coating on Tapered Microfiber for Relative Humidity Sensing Applications" Sensors 21, no. 21: 7132. https://doi.org/10.3390/s21217132
APA StyleAli, N., Azzuhri, S. R., Johari, M. A. M., Rashid, H., Khudus, M. I. M. A., Razak, M. Z. A., Chen, Z., Misran, N., & Arsad, N. (2021). Effects of Tungsten Disulphide Coating on Tapered Microfiber for Relative Humidity Sensing Applications. Sensors, 21(21), 7132. https://doi.org/10.3390/s21217132