Effect of Obesity on Knee and Ankle Biomechanics during Walking
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Data Collection and Processing
2.3. Kinematics
- −
- Knee flexion angle (KFE-IC index), knee rotation angle on the transverse plane (KRot-IC index) and ankle dorsiflexion angle (ADP-IC index) at Initial Contact;
- −
- Maximum knee ab-adduction in stance (MaxKAASt index) and in swing phase (MaxKAASw index);
- −
- Maximum knee rotation angle on the transverse plane (MaxKRot index) in the whole gait cycle;
- −
- Maximum ankle dorsiflexion (MaxADP index) and plantarflexion angles (minADP index) during the stance and swing phase, respectively;
- −
- Dynamic range of motion (ROM) of the knee in the sagittal plane during stance (KFE-ROMSt index) and swing (KFE-ROMSw index) phases, separately calculated as the difference between the maximum and minimum flexion-extension angle reached on the sagittal plane in each phase;
- −
- Dynamic range of motion for ankle dorsi-plantarflexion (ADP-ROM index) in the whole gait cycle.
2.4. Kinetics
- −
- Maximum value of ankle plantarflexion moment in terminal stance (MaxADPMom index, N*m/Kg), first peak of knee abduction moment (MaxKAAMom index, N*m/Kg) and maximum value of knee extension moment (MaxKFEMom index, N*m/Kg) in the whole gait cycle;
- −
- Minimum (minAP index, W/Kg) value in the first phase of stance and maximum (MaxAP index, W/Kg) ankle power during terminal stance.
2.5. Statistical Analysis
3. Results
- MaxKAAMom abs: C2: 51.3 ± 11.9 N*m (47.0; 55.6 N*m); C3: 72.5 ± 19.4 N*m (64.6; 80.3 N*m), CG: 33.2 ± 7.5 N*m (30.5; 35.9 N*m) (F2,87 = 2.59; p < 0.05).
- MaxADPMom abs: C2: 144.2 ± 29.7N*m (133.3; 155.1 N*m); C3: 172.7 ± 33.4 N*m (158.6; 186.8 N*m); CG: 89.7 ± 15.5 N*m (84.1; 95.3 N*m) (F2,86 = 69.87; p < 0.05).
- Max AP abs: C2: 309.2 ± 61.1 W (286.9; 331.6 W); C3: 367.5 ± 80.7 W (331.8; 403.2 W); CG: 202.7 ± 70.3 W (177.4; 228.1 W) (F2,84 = 38.93; p < 0.05).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orpana, H.M.; Tremblay, M.S.; Finès, P. Trends in Weight Change among Canadian Adults. Health Rep. 2007, 18, 9–16. [Google Scholar]
- Vismara, L.; Romei, M.; Galli, M.; Montesano, A.; Baccalaro, G.; Crivellini, M.; Grugni, G. Clinical Implications of Gait Analysis in the Rehabilitation of Adult Patients with “Prader-Willi” Syndrome: A Cross-Sectional Comparative Study (“Prader-Willi” Syndrome vs Matched Obese Patients and Healthy Subjects). J. Neuroeng. Rehabil. 2007, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, S.A.F.; Faintuch, J.; Valezi, A.C.; Sant’ Anna, A.F.; Gama-Rodrigues, J.J.; de Batista Fonseca, I.C.; Souza, R.B.; Senhorini, R.C. Gait Cinematic Analysis in Morbidly Obese Patients. Obes. Surg. 2005, 15, 1238–1242. [Google Scholar] [CrossRef]
- Anandacoomarasamy, A.; Caterson, I.; Sambrook, P.; Fransen, M.; March, L. The Impact of Obesity on the Musculoskeletal System. Int. J. Obes. 2008, 32, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Gilleard, W. Functional Task Limitations in Obese Adults. Curr. Obes. Rep. 2012, 1, 174–180. [Google Scholar] [CrossRef]
- Lai, P.P.K.; Leung, A.K.L.; Li, A.N.M.; Zhang, M. Three-Dimensional Gait Analysis of Obese Adults. Clin. Biomech. 2008, 23 (Suppl. 1), S2–S6. [Google Scholar] [CrossRef]
- Runhaar, J.; Koes, B.W.; Clockaerts, S.; Bierma-Zeinstra, S.M.A. A Systematic Review on Changed Biomechanics of Lower Extremities in Obese Individuals: A Possible Role in Development of Osteoarthritis. Obes. Rev. 2011, 12, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Gushue, D.L.; Houck, J.; Lerner, A.L. Effects of Childhood Obesity on Three-Dimensional Knee Joint Biomechanics During Walking. J. Pediatr. Orthop. 2005, 25, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.G.; Di Gioia, A.; Conti, L.; Berti, L.; Degli Esposti, L.; Tarrini, G.; Melchionda, N.; Giannini, S. Physical Activity Monitoring in Obese People in the Real Life Environment. J. Neuroeng. Rehabil. 2009, 6, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVita, P.; Hortobágyi, T. Obesity Is Not Associated with Increased Knee Joint Torque and Power during Level Walking. J. Biomech. 2003, 36, 1355–1362. [Google Scholar] [CrossRef]
- Błaszczyk, J.W.; Cieślinska-Świder, J.; Plewa, M.; Zahorska-Markiewicz, B.; Markiewicz, A. Effects of Excessive Body Weight on Postural Control. J. Biomech. 2009, 42, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Browning, R.C.; McGowan, C.P.; Kram, R. Obesity Does Not Increase External Mechanical Work per Kilogram Body Mass during Walking. J. Biomech. 2009, 42, 2273–2278. [Google Scholar] [CrossRef] [Green Version]
- Browning, R.C.; Kram, R. Energetic Cost and Preferred Speed of Walking in Obese vs. Normal Weight Women. Obes. Res. 2005, 13, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Lockhart, T.E.; Yeoh, H.T. Effects of Obesity on Slip-Induced Fall Risks among Young Male Adults. J. Biomech. 2012, 45, 1042–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, R.C.; Kram, R. Effects of Obesity on the Biomechanics of Walking at Different Speeds. Med. Sci. Sports Exerc. 2007, 39, 1632–1641. [Google Scholar] [CrossRef] [PubMed]
- Russell, E.M.; Hamill, J. Lateral Wedges Decrease Biomechanical Risk Factors for Knee Osteoarthritis in Obese Women. J. Biomech. 2011, 44, 2286–2291. [Google Scholar] [CrossRef] [PubMed]
- MacLean, K.F.E.; Callaghan, J.P.; Maly, M.R. Effect of Obesity on Knee Joint Biomechanics during Gait in Young Adults. Cogent. Med. 2016, 3, 1173778. [Google Scholar] [CrossRef] [Green Version]
- McMillan, A.G.; Pulver, A.M.E.; Collier, D.N.; Williams, D.S.B. Sagittal and Frontal Plane Joint Mechanics throughout the Stance Phase of Walking in Adolescents Who Are Obese. Gait Posture 2010, 32, 263–268. [Google Scholar] [CrossRef]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A Gait Analysis Data Collection and Reduction Technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Park, K.; Hur, P.; Rosengren, K.S.; Horn, G.P.; Hsiao-Wecksler, E.T. Effect of Load Carriage on Gait Due to Firefighting Air Bottle Configuration. Ergonomics 2010, 53, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, P.; Pisciotta, J.C.; Pavlou, K.N.; Cairns, M.A.; Simon, S.R. Biomechanical Gait Analysis in Obese Men. Arch. Phys. Med. Rehabil. 1991, 72, 1065–1070. [Google Scholar] [PubMed]
- Molina-Garcia, P.; Migueles, J.H.; Cadenas-Sanchez, C.; Esteban-Cornejo, I.; Mora-Gonzalez, J.; Rodriguez-Ayllon, M.; Plaza-Florido, A.; Vanrenterghem, J.; Ortega, F.B. A Systematic Review on Biomechanical Characteristics of Walking in Children and Adolescents with Overweight/Obesity: Possible Implications for the Development of Musculoskeletal Disorders. Obes. Rev. 2019, 20, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Koushyar, H.; Nussbaum, M.A.; Davy, K.P.; Madigan, M.L. Relative Strength at the Hip, Knee, and Ankle Is Lower Among Younger and Older Females Who Are Obese. J. Geriatr. Phys. Ther. 2017, 40, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, S.; Chau, J.Y.; Catt, M.; Bauman, A.; Trenell, M.I. Low Physical Activity, High Television Viewing and Poor Sleep Duration Cluster in Overweight and Obese Adults; a Cross-Sectional Study of 398,984 Participants from the UK Biobank. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 57. [Google Scholar] [CrossRef] [PubMed]
Participants (M, F) | Age (years) | BMI (kg/m2) | Height (m) | Body Mass (kg) |
---|---|---|---|---|
CG (6, 10) | 31.07 (5.45) | 21.21 (1.99) | 1.70 (0.06) | 61.59 (8.47) |
C1 (2, 0) | 35.06 (6.98) | 33.61 (1.88) | 1.73 (0.12) | 100.59 (6.42) |
C2 (6, 11) | 28.38 (6.63) | 37.56 (1.05) | 1.65 (0.09) | 102.31 (11.95) |
C3 (7, 6) | 27.52 (8.13) | 42.90 (2.11) | 1.66 (0.11) | 119.08 (18.31) |
Parameters | OG (32 Individuals) | CG (16 Individuals) |
---|---|---|
Kinematic Variables (°) | ||
KFE-IC | 3.7 ± 4.0 | 4.4 ± 3.2 |
KFE-ROMSt | 12.8 ± 4.4 * | 14.9 ± 4.4 |
KFE-ROMSw | 56.4 ± 6.9 * | 61.2 ± 4.4 |
KRot-IC | −2.2 ± 8.0 * | −1.5 ± 9.5 |
MaxKRot | 12.0 ± 7.7 | 14.5 ± 9.6 |
MaxKAASt | 10 ± 4.3 * | −6.7 ± 8.8 |
MaxKAASw | 28.0 ± 12.2 * | 10.8 ± 7.5 |
ADP-IC | 0.2 ± 3.2 | −1.4 ± 2.4 |
MaxADP | 12.8 ± 3.4 | 13.4 ± 2.8 |
minADP | −15.7 ± 5.8 | −17.6 ± 5.5 |
ADP-ROM | 28.5 ± 5.5 * | 32.7 (4.4) |
Kinetic Variables | ||
MaxKAAMom (N*m/kg) | 0.6 ± 0.1 | 0.6 ± 0.1 |
MaxKAAMom abs (N*m) | 60.9 ± 19.0 * | 33.2 ± 7.5 |
MaxKFEMom (N*m/kg) | 0.1 ± 0.1 * | 0.4 ± 0.2 |
MaxKFEMom abs (N*m) | 18.8 ± 11.9 | 21.1 ± 8.7 |
MaxADPMom (N*m/kg) | 1.4 ± 0.2 * | 1.5 ± 0.2 |
MaxADPMom abs (N*m) | 160.0 ± 35.5 * | 89.7 ± 15.5 |
minAP (W/kg) | −2.1 ± 0.3 * | −1.4 ± 1.2 |
minAP abs (W) | −110.5 ± 36.4 * | −48.2 ± 72.2 |
MaxAP (W/kg) | 3.0 ± 0.6 * | 3.4 ± 1.1 |
Max AP abs (W) | 336.0 ± 74.1 * | 202.7 ± 70.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capodaglio, P.; Gobbi, M.; Donno, L.; Fumagalli, A.; Buratto, C.; Galli, M.; Cimolin, V. Effect of Obesity on Knee and Ankle Biomechanics during Walking. Sensors 2021, 21, 7114. https://doi.org/10.3390/s21217114
Capodaglio P, Gobbi M, Donno L, Fumagalli A, Buratto C, Galli M, Cimolin V. Effect of Obesity on Knee and Ankle Biomechanics during Walking. Sensors. 2021; 21(21):7114. https://doi.org/10.3390/s21217114
Chicago/Turabian StyleCapodaglio, Paolo, Michele Gobbi, Lucia Donno, Andrea Fumagalli, Camillo Buratto, Manuela Galli, and Veronica Cimolin. 2021. "Effect of Obesity on Knee and Ankle Biomechanics during Walking" Sensors 21, no. 21: 7114. https://doi.org/10.3390/s21217114
APA StyleCapodaglio, P., Gobbi, M., Donno, L., Fumagalli, A., Buratto, C., Galli, M., & Cimolin, V. (2021). Effect of Obesity on Knee and Ankle Biomechanics during Walking. Sensors, 21(21), 7114. https://doi.org/10.3390/s21217114