Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils
Abstract
:1. Introduction
2. Theory
3. Modeling
4. Field Tests
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baldwin, C.S. Brief history of fiber optic sensing in the oil field industry. In Proceedings of the Fiber Optic Sensors and Applications XI, Baltimore, MD, USA, 5–9 May 2014; p. 909803. [Google Scholar] [CrossRef]
- Mateeva, A.; Lopez, J.; Potters, H.; Mestayer, J.; Cox, B.; Kiyashchenko, D.; Wills, P.; Grandi, S.; Hornman, K.; Kuvshinov, B.; et al. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophys. Prospect. 2014, 62, 679–692. [Google Scholar] [CrossRef]
- Daley, T.M.; Freifeld, B.; Ajo-Franklin, J.; Dou, S.; Pevzner, R.; Shulakova, V.; Kashika, S.; Miller, D.; Goetz, J.; Henninges, J.; et al. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. Lead. Edge 2013, 32, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Wang, C.; Shang, Y.; Zhang, X.; Zhao, Y. Distributed fiber-optic acoustic sensing for petroleum geology exploration. J. Phys. Conf. Ser. 2018, 1065, 252029. [Google Scholar] [CrossRef] [Green Version]
- Parker, T.; Shatalin, S.; Farhadiroushan, M. Distributed acoustic sensing—A new tool for seismic applications. First Break 2014, 32, 61–69. [Google Scholar] [CrossRef]
- Jousset, P.; Reinsch, T.; Ryberg, T.; Blanck, H.; Clarke, A.M.; Aghayev, R.; Hersir, G.P.; Henninges, J.; Weber, M.; Krawczyk, C.M. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 2018, 9, 2509. [Google Scholar] [CrossRef] [PubMed]
- Ajo-Franklin, J.B.; Dou, S.; Lindsey, N.J.; Monga, I.; Tracy, C.; Robertson, M.; Tribaldos, V.R.; Ulrich, C.; Freifeld, B.; Daley, T.; et al. Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kharasov, D.R.; Bengalskii, D.M.; Vyatkin, M.Y.; Nanii, O.E.; Fomiryakov, E.A.; Nikitin, S.P.; Popov, S.M.; Chamorovsky, Y.K.; Treshchikov, V.N. Extending the operation range of a phase-sensitive optical time-domain reflectometer by using fibre with chirped Bragg gratings. Quantum Electron. 2020, 50, 510. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Zhao, L.; Fan, Z. An Event Recognition Method for Φ-OTDR Sensing System Based on Deep Learning. Sensors 2019, 19, 3421. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Liu, Z.; Zhou, X.; Li, S.; Yuan, X.; Zhang, Y.; Shao, L.; Zhang, X. Oil and gas pipeline leakage recognition based on distributed vibration and temperature information fusion. Results Opt. 2021, 5, 100131. [Google Scholar] [CrossRef]
- Papp, A.; Wiesmeyr, C.; Litzenberger, M.; Garn, H.; Kropatsch, W. Train Detection and Tracking in Optical Time Domain Reflectometry (OTDR) Signals. In Proceedings of the German Conference on Pattern Recognition, Hannover, Germany, 12–15 September 2016; pp. 320–331. [Google Scholar]
- Peng, F.; Duan, N.; Rao, Y.; Li, J. Real-Time Position and Speed Monitoring of Trains Using Phase-Sensitive OTDR. IEEE Photonics J. 2014, 26, 2055–2057. [Google Scholar] [CrossRef]
- Taylor, H.F.; Lee, C.E. Apparatus and Method for Fiber Optic Intrusion Sensing. U.S. Patent 5194847 A, 16 March 1993. [Google Scholar]
- Juarez, J.C.; Maier, E.W.; Choi, K.N.; Taylor, H.F. Distributed Fiber-Optic Intrusion Sensor System. J. Lightwave Technol. 2005, 23, 2081. [Google Scholar] [CrossRef]
- Juarez, J.C.; Taylor, H.F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters. Appl. Opt. 2007, 46, 1968–1971. [Google Scholar] [CrossRef] [PubMed]
- Aktas, M.; Akgun, T.; Demircin, M.U.; Buyukaydin, D. Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications. SPIE Commer. Sci. Sens. Imaging 2017, 10208, 102080. [Google Scholar] [CrossRef]
- Shiloh, L.; Eyal, A.; Giryes, R. Deep learning approach for processing fiber-optic DAS seismic data. In Proceedings of the 26th International Conference on Optical Fiber Sensors (Optical Society of America, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zeng, J.; Li, J.; Fan, M.; Wu, H.; Peng, F.; Zhang, L.; Zhou, Y.; Rao, Y. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Opt. Lett. 2014, 39, 5866–5869. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zeng, J.; Li, J.; Peng, F.; Zhang, L.; Zhou, Y.; Wu, H.; Rao, Y. 175 km Phase-sensitive OTDR with Hybrid Distributed Amplification. Proc. SPIE 2014, 9157, 9157D5. [Google Scholar] [CrossRef]
- Tian, X.; Yu, Y.; Zhao, M.; Jiang, G. Long distance Φ-OTDR system based on Raman and EDFA synthetic amplification. In AOPC 2017: Fiber Optic Sensing and Optical Communications; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10464. [Google Scholar] [CrossRef]
- Lu, B.; Zheng, H.; Wang, Z.; Ye, Q.; Wei, F.; Qu, R.; Cai, H. High spatial resolution Φ-OTDR with long sensing distance. In Optical Fiber Sensors; Optical Society of America: Washington, DC, USA, 2018; p. ThE25. [Google Scholar] [CrossRef]
- Stepanov, K.V.; Zhirnov, A.A.; Chernutsky, A.O.; Choban, T.V.; Pnev, A.B.; Lopunov, A.I.; Butov, O.V. Spatial Resolution Improvement for phi-OTDR Sensors via Weak Fiber Bragg Gratings. In Proceedings of the 2020 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 2–6 November 2020. [Google Scholar] [CrossRef]
- Marcon, L.; Soto, M.A.; Soriano-Amat, M.; Costa, L.; Fernandez-Ruiz, M.R.; Martins, H.F.; Palmieri, L.; Gonzalez-Herraez, M. High-Resolution Chirped-Pulse ϕ-OTDR by Means of Sub-Bands Processing. J. Light. Technol. 2020, 38, 4142–4149. [Google Scholar] [CrossRef]
- Hofmann, J.; Facchini, M.; Lowell, M. Analysis of the acoustic response in water and sand of different fiber optic sensing cables. In Sensors for Extreme Harsh Environments II; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9491, p. 94910E. [Google Scholar] [CrossRef]
- Freeland, R.S.; Chow, B.; Williams, J.; Godfrey, A. Relative acoustic sensitivity of standard telecom and specialty optical fiber cables for distributed sensing. In Fiber Optic Sensors and Applications XIV; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10208. [Google Scholar] [CrossRef]
- Han, B.; Guan, H.; Yao, J.; Rao, Y.J.; Ran, Z.; Gong, Y.; Li, Q.; Li, M.; Zhang, R.; An, S.; et al. Distributed acoustic sensing with sensitivity-enhanced optical cable. IEEE Sens. J. 2020, 21, 4644–4651. [Google Scholar] [CrossRef]
- Goldner, E.L.; Andersen, J.K.; Cherbettchian, A.H. Fiber optic acoustic sensor arrays and systems, and methods of fabricating the same. U.S. Patent No. 9217801, 22 December 2015. [Google Scholar]
- Martin, J.; Donno, D.; Papp, B.; Hartog, A. Fiber optic distributed vibration sensing with directional sensitivity. U.S. Patent No. 9880047, 30 January 2018. [Google Scholar]
- He, H.; Shao, L.; Li, H.; Pan, W.; Luo, B.; Zou, X.; Yan, L. SNR enhancement in phase-sensitive OTDR with adaptive 2D bilateral filtering algorithm. IEEE Photonics J. 2017, 9, 6802610. [Google Scholar] [CrossRef]
- Sun, Q.; Feng, H.; Yan, X.; Zeng, Z. Recognition of a Phase-Sensitivity OTDR Sensing System Based on Morphologic Feature Extraction. Sensors 2015, 15, 15179–15197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepanov, K.V.; Zhirnov, A.A.; Chernutsky, A.O.; Koshelev, K.I.; Pnev, A.B.; Lopunov, A.I.; Butov, O.V. The Sensitivity Improvement Characterization of Distributed Strain Sensors Due to Weak Fiber Bragg Gratings. Sensors 2020, 20, 6431. [Google Scholar] [CrossRef] [PubMed]
- Yatseev, V.A.; Zotov, A.M.; Butov, O.V. Combined Frequency and Phase domain time-gated reflectometry based on a fiber with reflection points for absolute measurements. Results Phys. 2020, 19, 103485. [Google Scholar] [CrossRef]
- de Miguel Soto, V.; Jason, J.; Kurtoğlu, D.; Lopez-Amo, M.; Wuilpart, M. Spectral shadowing suppression technique in phase-OTDR sensing based on weak fiber Bragg grating array. Opt. Lett. 2019, 44, 526–529. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, Y.; Xia, L.; Wu, X.; Zhang, X. Improved Φ-otdr sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array. J. Lightwave Technol. 2015, 33, 4775–4780. [Google Scholar] [CrossRef]
- Liu, T.; Wang, F.; Yuan, Q.; Liu, Y.; Zhang, L.; Zhang, X. Simulation of the performance of phase-sensitive OTDR based on ultra-weak FBG array using double pulses. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017; pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Wang, F.; Zhang, X.; Zhang, L.; Yuan, Q.; Liu, Y.; Yan, Z. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse. Opt. Eng. 2017, 56, 084104. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Liu, T.; Yuan, Q.; Liu, Y.; Niu, J.; Zhang, X.; Zhang, L. High performance interrogation of ultra-weak FBG array using double-pulse and heterodyne coherent detection. In Conference on Lasers and Electro-Optics/Pacific Rim; Optical Society of America: Washington, DC, USA, 2017; p. 1119. [Google Scholar] [CrossRef]
- Liu, T.; Wang, F.; Zhang, X.; Yuan, Q.; Niu, J.; Zhang, L.; Wei, T. Interrogation of ultra-weak FBG array using double-pulse and heterodyne detection. IEEE Photonics Technol. Lett. 2018, 30, 677–680. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, F.; Zhang, X.; Zhang, Y.; Xu, W.; Zhang, L. High performance interrogation by a composite-double-probe-pulse for ultra-weak FBG array. In 17th International Conference on Optical Communications and Networks (ICOCN2018); International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 11048, p. 110483U. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Liu, Y.; Wei, T.; Zhang, Y.; Ji, W.; Zong, M.; Zhang, X. Polarization fading elimination for ultra-weak FBG array-based Φ-OTDR using a composite double probe pulse approach. Opt. Express 2019, 27, 20468–20478. [Google Scholar] [CrossRef]
- Zhirnov, A.A.; Stepanov, K.V.; Chernutsky, A.O.; Fedorov, A.K.; Nesterov, E.T.; Svelto, C.; Pnev, A.B.; Karasik, V.E. Influence of the Laser Frequency Drift in Phase-Sensitive Optical Time Domain Reflectometry. Opt. Spectrosc. 2019, 127, 656–663. [Google Scholar] [CrossRef]
- Taherzadeh, S.; Attenborough, K. Deduction of ground impedance from measurements of excess attenuation spectra. J. Acoust. Soc. Am. 1999, 105, 2039–2042. [Google Scholar] [CrossRef]
Parameter | Straight Cable | Fiber Coil Method |
---|---|---|
Distribution mode, SNR | 3.45 | 8.37 |
Number of realizations with SNR < 5 | 807 | 21 |
Detection probability | 19.3% | 97.9% |
Parameter | Value |
---|---|
ADC | 50 MHz (the equivalent of 2 m spatial discretization) |
Pulse duration | 100 ns |
Spatial resolution | 10 m |
Impact frequencies | 38 Hz, 55 Hz, and 101 Hz |
Distance from the vibration source to the cable | 0 m (over the cable), 2 m, and 4 m |
Straight Cable | Fiber Coil | ||
---|---|---|---|
Mean dimensionless SNR at 38 Hz (Number of experiments with SNR > 5) | Dimensionless SNR increase | ||
0 m (over the cable) | 15.75 (10 of 10) | 39.37 (10 of 10) | 2.50 |
2 m from the cable | 8.64 (7 of 10) | 27.09 (10 of 10) | 3.13 |
4 m from the cable | 8.09 (9 of 10) | 18.8 (10 of 10) | 2.25 |
Mean dimensionless SNR at 55 Hz (Number of experiments with SNR > 5) | |||
0 m (over the cable) | 15.27 (10 of 10) | 33.03 (10 of 10) | 2.16 |
2 m from the cable | 4.66 (5 of 10) | 13.18 (10 of 10) | 2.83 |
4 m from the cable | 3.98 (1 of 10) | 4.88 (5 of 10) | 1.23 |
Mean dimensionless SNR at 101 Hz (Number of experiments with SNR > 5) | |||
0 m (over the cable) | 7.66 (7 of 10) | 9.96 (9 of 10) | 1.30 |
2 m from the cable | 1.82 (0 of 10) | 4.14 (3 of 10) | SNR < 5 |
4 m from the cable | 1.93 (0 of 10) | 2.03 (0 of 10) | SNR < 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanov, K.V.; Zhirnov, A.A.; Koshelev, K.I.; Chernutsky, A.O.; Khan, R.I.; Pnev, A.B. Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils. Sensors 2021, 21, 7077. https://doi.org/10.3390/s21217077
Stepanov KV, Zhirnov AA, Koshelev KI, Chernutsky AO, Khan RI, Pnev AB. Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils. Sensors. 2021; 21(21):7077. https://doi.org/10.3390/s21217077
Chicago/Turabian StyleStepanov, Konstantin V., Andrey A. Zhirnov, Kirill I. Koshelev, Anton O. Chernutsky, Roman I. Khan, and Alexey B. Pnev. 2021. "Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils" Sensors 21, no. 21: 7077. https://doi.org/10.3390/s21217077
APA StyleStepanov, K. V., Zhirnov, A. A., Koshelev, K. I., Chernutsky, A. O., Khan, R. I., & Pnev, A. B. (2021). Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils. Sensors, 21(21), 7077. https://doi.org/10.3390/s21217077