Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils
Abstract
1. Introduction
2. Theory
3. Modeling
4. Field Tests
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baldwin, C.S. Brief history of fiber optic sensing in the oil field industry. In Proceedings of the Fiber Optic Sensors and Applications XI, Baltimore, MD, USA, 5–9 May 2014; p. 909803. [Google Scholar] [CrossRef]
- Mateeva, A.; Lopez, J.; Potters, H.; Mestayer, J.; Cox, B.; Kiyashchenko, D.; Wills, P.; Grandi, S.; Hornman, K.; Kuvshinov, B.; et al. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophys. Prospect. 2014, 62, 679–692. [Google Scholar] [CrossRef]
- Daley, T.M.; Freifeld, B.; Ajo-Franklin, J.; Dou, S.; Pevzner, R.; Shulakova, V.; Kashika, S.; Miller, D.; Goetz, J.; Henninges, J.; et al. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. Lead. Edge 2013, 32, 699–706. [Google Scholar] [CrossRef]
- Ni, J.; Wang, C.; Shang, Y.; Zhang, X.; Zhao, Y. Distributed fiber-optic acoustic sensing for petroleum geology exploration. J. Phys. Conf. Ser. 2018, 1065, 252029. [Google Scholar] [CrossRef]
- Parker, T.; Shatalin, S.; Farhadiroushan, M. Distributed acoustic sensing—A new tool for seismic applications. First Break 2014, 32, 61–69. [Google Scholar] [CrossRef]
- Jousset, P.; Reinsch, T.; Ryberg, T.; Blanck, H.; Clarke, A.M.; Aghayev, R.; Hersir, G.P.; Henninges, J.; Weber, M.; Krawczyk, C.M. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 2018, 9, 2509. [Google Scholar] [CrossRef] [PubMed]
- Ajo-Franklin, J.B.; Dou, S.; Lindsey, N.J.; Monga, I.; Tracy, C.; Robertson, M.; Tribaldos, V.R.; Ulrich, C.; Freifeld, B.; Daley, T.; et al. Distributed Acoustic Sensing Using Dark Fiber for Near-Surface Characterization and Broadband Seismic Event Detection. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef]
- Kharasov, D.R.; Bengalskii, D.M.; Vyatkin, M.Y.; Nanii, O.E.; Fomiryakov, E.A.; Nikitin, S.P.; Popov, S.M.; Chamorovsky, Y.K.; Treshchikov, V.N. Extending the operation range of a phase-sensitive optical time-domain reflectometer by using fibre with chirped Bragg gratings. Quantum Electron. 2020, 50, 510. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Zhao, L.; Fan, Z. An Event Recognition Method for Φ-OTDR Sensing System Based on Deep Learning. Sensors 2019, 19, 3421. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Z.; Zhou, X.; Li, S.; Yuan, X.; Zhang, Y.; Shao, L.; Zhang, X. Oil and gas pipeline leakage recognition based on distributed vibration and temperature information fusion. Results Opt. 2021, 5, 100131. [Google Scholar] [CrossRef]
- Papp, A.; Wiesmeyr, C.; Litzenberger, M.; Garn, H.; Kropatsch, W. Train Detection and Tracking in Optical Time Domain Reflectometry (OTDR) Signals. In Proceedings of the German Conference on Pattern Recognition, Hannover, Germany, 12–15 September 2016; pp. 320–331. [Google Scholar]
- Peng, F.; Duan, N.; Rao, Y.; Li, J. Real-Time Position and Speed Monitoring of Trains Using Phase-Sensitive OTDR. IEEE Photonics J. 2014, 26, 2055–2057. [Google Scholar] [CrossRef]
- Taylor, H.F.; Lee, C.E. Apparatus and Method for Fiber Optic Intrusion Sensing. U.S. Patent 5194847 A, 16 March 1993. [Google Scholar]
- Juarez, J.C.; Maier, E.W.; Choi, K.N.; Taylor, H.F. Distributed Fiber-Optic Intrusion Sensor System. J. Lightwave Technol. 2005, 23, 2081. [Google Scholar] [CrossRef]
- Juarez, J.C.; Taylor, H.F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters. Appl. Opt. 2007, 46, 1968–1971. [Google Scholar] [CrossRef] [PubMed]
- Aktas, M.; Akgun, T.; Demircin, M.U.; Buyukaydin, D. Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications. SPIE Commer. Sci. Sens. Imaging 2017, 10208, 102080. [Google Scholar] [CrossRef]
- Shiloh, L.; Eyal, A.; Giryes, R. Deep learning approach for processing fiber-optic DAS seismic data. In Proceedings of the 26th International Conference on Optical Fiber Sensors (Optical Society of America, Lausanne, Switzerland, 24–28 September 2018. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, J.; Li, J.; Fan, M.; Wu, H.; Peng, F.; Zhang, L.; Zhou, Y.; Rao, Y. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Opt. Lett. 2014, 39, 5866–5869. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zeng, J.; Li, J.; Peng, F.; Zhang, L.; Zhou, Y.; Wu, H.; Rao, Y. 175 km Phase-sensitive OTDR with Hybrid Distributed Amplification. Proc. SPIE 2014, 9157, 9157D5. [Google Scholar] [CrossRef]
- Tian, X.; Yu, Y.; Zhao, M.; Jiang, G. Long distance Φ-OTDR system based on Raman and EDFA synthetic amplification. In AOPC 2017: Fiber Optic Sensing and Optical Communications; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10464. [Google Scholar] [CrossRef]
- Lu, B.; Zheng, H.; Wang, Z.; Ye, Q.; Wei, F.; Qu, R.; Cai, H. High spatial resolution Φ-OTDR with long sensing distance. In Optical Fiber Sensors; Optical Society of America: Washington, DC, USA, 2018; p. ThE25. [Google Scholar] [CrossRef]
- Stepanov, K.V.; Zhirnov, A.A.; Chernutsky, A.O.; Choban, T.V.; Pnev, A.B.; Lopunov, A.I.; Butov, O.V. Spatial Resolution Improvement for phi-OTDR Sensors via Weak Fiber Bragg Gratings. In Proceedings of the 2020 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 2–6 November 2020. [Google Scholar] [CrossRef]
- Marcon, L.; Soto, M.A.; Soriano-Amat, M.; Costa, L.; Fernandez-Ruiz, M.R.; Martins, H.F.; Palmieri, L.; Gonzalez-Herraez, M. High-Resolution Chirped-Pulse ϕ-OTDR by Means of Sub-Bands Processing. J. Light. Technol. 2020, 38, 4142–4149. [Google Scholar] [CrossRef]
- Hofmann, J.; Facchini, M.; Lowell, M. Analysis of the acoustic response in water and sand of different fiber optic sensing cables. In Sensors for Extreme Harsh Environments II; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9491, p. 94910E. [Google Scholar] [CrossRef]
- Freeland, R.S.; Chow, B.; Williams, J.; Godfrey, A. Relative acoustic sensitivity of standard telecom and specialty optical fiber cables for distributed sensing. In Fiber Optic Sensors and Applications XIV; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10208. [Google Scholar] [CrossRef]
- Han, B.; Guan, H.; Yao, J.; Rao, Y.J.; Ran, Z.; Gong, Y.; Li, Q.; Li, M.; Zhang, R.; An, S.; et al. Distributed acoustic sensing with sensitivity-enhanced optical cable. IEEE Sens. J. 2020, 21, 4644–4651. [Google Scholar] [CrossRef]
- Goldner, E.L.; Andersen, J.K.; Cherbettchian, A.H. Fiber optic acoustic sensor arrays and systems, and methods of fabricating the same. U.S. Patent No. 9217801, 22 December 2015. [Google Scholar]
- Martin, J.; Donno, D.; Papp, B.; Hartog, A. Fiber optic distributed vibration sensing with directional sensitivity. U.S. Patent No. 9880047, 30 January 2018. [Google Scholar]
- He, H.; Shao, L.; Li, H.; Pan, W.; Luo, B.; Zou, X.; Yan, L. SNR enhancement in phase-sensitive OTDR with adaptive 2D bilateral filtering algorithm. IEEE Photonics J. 2017, 9, 6802610. [Google Scholar] [CrossRef]
- Sun, Q.; Feng, H.; Yan, X.; Zeng, Z. Recognition of a Phase-Sensitivity OTDR Sensing System Based on Morphologic Feature Extraction. Sensors 2015, 15, 15179–15197. [Google Scholar] [CrossRef] [PubMed]
- Stepanov, K.V.; Zhirnov, A.A.; Chernutsky, A.O.; Koshelev, K.I.; Pnev, A.B.; Lopunov, A.I.; Butov, O.V. The Sensitivity Improvement Characterization of Distributed Strain Sensors Due to Weak Fiber Bragg Gratings. Sensors 2020, 20, 6431. [Google Scholar] [CrossRef] [PubMed]
- Yatseev, V.A.; Zotov, A.M.; Butov, O.V. Combined Frequency and Phase domain time-gated reflectometry based on a fiber with reflection points for absolute measurements. Results Phys. 2020, 19, 103485. [Google Scholar] [CrossRef]
- de Miguel Soto, V.; Jason, J.; Kurtoğlu, D.; Lopez-Amo, M.; Wuilpart, M. Spectral shadowing suppression technique in phase-OTDR sensing based on weak fiber Bragg grating array. Opt. Lett. 2019, 44, 526–529. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, Y.; Xia, L.; Wu, X.; Zhang, X. Improved Φ-otdr sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array. J. Lightwave Technol. 2015, 33, 4775–4780. [Google Scholar] [CrossRef]
- Liu, T.; Wang, F.; Yuan, Q.; Liu, Y.; Zhang, L.; Zhang, X. Simulation of the performance of phase-sensitive OTDR based on ultra-weak FBG array using double pulses. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Liu, T.; Wang, F.; Zhang, X.; Zhang, L.; Yuan, Q.; Liu, Y.; Yan, Z. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse. Opt. Eng. 2017, 56, 084104. [Google Scholar] [CrossRef][Green Version]
- Wang, F.; Liu, T.; Yuan, Q.; Liu, Y.; Niu, J.; Zhang, X.; Zhang, L. High performance interrogation of ultra-weak FBG array using double-pulse and heterodyne coherent detection. In Conference on Lasers and Electro-Optics/Pacific Rim; Optical Society of America: Washington, DC, USA, 2017; p. 1119. [Google Scholar] [CrossRef]
- Liu, T.; Wang, F.; Zhang, X.; Yuan, Q.; Niu, J.; Zhang, L.; Wei, T. Interrogation of ultra-weak FBG array using double-pulse and heterodyne detection. IEEE Photonics Technol. Lett. 2018, 30, 677–680. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Zhang, X.; Zhang, Y.; Xu, W.; Zhang, L. High performance interrogation by a composite-double-probe-pulse for ultra-weak FBG array. In 17th International Conference on Optical Communications and Networks (ICOCN2018); International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 11048, p. 110483U. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Wei, T.; Zhang, Y.; Ji, W.; Zong, M.; Zhang, X. Polarization fading elimination for ultra-weak FBG array-based Φ-OTDR using a composite double probe pulse approach. Opt. Express 2019, 27, 20468–20478. [Google Scholar] [CrossRef]
- Zhirnov, A.A.; Stepanov, K.V.; Chernutsky, A.O.; Fedorov, A.K.; Nesterov, E.T.; Svelto, C.; Pnev, A.B.; Karasik, V.E. Influence of the Laser Frequency Drift in Phase-Sensitive Optical Time Domain Reflectometry. Opt. Spectrosc. 2019, 127, 656–663. [Google Scholar] [CrossRef]
- Taherzadeh, S.; Attenborough, K. Deduction of ground impedance from measurements of excess attenuation spectra. J. Acoust. Soc. Am. 1999, 105, 2039–2042. [Google Scholar] [CrossRef]










| Parameter | Straight Cable | Fiber Coil Method |
|---|---|---|
| Distribution mode, SNR | 3.45 | 8.37 |
| Number of realizations with SNR < 5 | 807 | 21 |
| Detection probability | 19.3% | 97.9% |
| Parameter | Value |
|---|---|
| ADC | 50 MHz (the equivalent of 2 m spatial discretization) |
| Pulse duration | 100 ns |
| Spatial resolution | 10 m |
| Impact frequencies | 38 Hz, 55 Hz, and 101 Hz |
| Distance from the vibration source to the cable | 0 m (over the cable), 2 m, and 4 m |
| Straight Cable | Fiber Coil | ||
|---|---|---|---|
| Mean dimensionless SNR at 38 Hz (Number of experiments with SNR > 5) | Dimensionless SNR increase | ||
| 0 m (over the cable) | 15.75 (10 of 10) | 39.37 (10 of 10) | 2.50 |
| 2 m from the cable | 8.64 (7 of 10) | 27.09 (10 of 10) | 3.13 |
| 4 m from the cable | 8.09 (9 of 10) | 18.8 (10 of 10) | 2.25 |
| Mean dimensionless SNR at 55 Hz (Number of experiments with SNR > 5) | |||
| 0 m (over the cable) | 15.27 (10 of 10) | 33.03 (10 of 10) | 2.16 |
| 2 m from the cable | 4.66 (5 of 10) | 13.18 (10 of 10) | 2.83 |
| 4 m from the cable | 3.98 (1 of 10) | 4.88 (5 of 10) | 1.23 |
| Mean dimensionless SNR at 101 Hz (Number of experiments with SNR > 5) | |||
| 0 m (over the cable) | 7.66 (7 of 10) | 9.96 (9 of 10) | 1.30 |
| 2 m from the cable | 1.82 (0 of 10) | 4.14 (3 of 10) | SNR < 5 |
| 4 m from the cable | 1.93 (0 of 10) | 2.03 (0 of 10) | SNR < 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanov, K.V.; Zhirnov, A.A.; Koshelev, K.I.; Chernutsky, A.O.; Khan, R.I.; Pnev, A.B. Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils. Sensors 2021, 21, 7077. https://doi.org/10.3390/s21217077
Stepanov KV, Zhirnov AA, Koshelev KI, Chernutsky AO, Khan RI, Pnev AB. Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils. Sensors. 2021; 21(21):7077. https://doi.org/10.3390/s21217077
Chicago/Turabian StyleStepanov, Konstantin V., Andrey A. Zhirnov, Kirill I. Koshelev, Anton O. Chernutsky, Roman I. Khan, and Alexey B. Pnev. 2021. "Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils" Sensors 21, no. 21: 7077. https://doi.org/10.3390/s21217077
APA StyleStepanov, K. V., Zhirnov, A. A., Koshelev, K. I., Chernutsky, A. O., Khan, R. I., & Pnev, A. B. (2021). Sensitivity Improvement of Phi-OTDR by Fiber Cable Coils. Sensors, 21(21), 7077. https://doi.org/10.3390/s21217077

