Short-Time Impedance Spectroscopy Using a Mode-Switching Nonsinusoidal Oscillator: Applicability to Biological Tissues and Continuous Measurement
Abstract
:1. Introduction
- (1)
- Design a nonsinusoidal oscillation circuit capable of periodically switching oscillation frequency;
- (2)
- Show that the proposed method can estimate circuit parameters for circuit models close to actual measured objects;
- (3)
- Apply the proposed method to the impedance measurement of biological tissues;
- (4)
- Show that the continuous measurement of impedance is possible.
2. Capacitive Coupling Impedance Spectroscopy
2.1. Mode-Switching Nonsinusoidal Oscillator
2.2. Experimental Method
2.2.1. CIS of Parallel RC Circuits and Bioimpedance Models
2.2.2. Application of CIS to Biological Tissues
2.2.3. Continuous Impedance Measurement Using CIS
2.2.4. Data Acquisition and DFT Analysis
3. Results and Discussion
3.1. CIS of Parallel RC Circuits and Bioimpedance Models
3.2. Application of CIS to Biological Tissues
3.3. Continuous Impedance Measurement Using CIS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grossi, M.; Riccò, B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. J. Sens. Sens. Syst. 2017, 6, 303–325. [Google Scholar] [CrossRef] [Green Version]
- Szuster, B.; Roj, Z.S.D.; Kowalski, P.; Sobotnicki, A.; Woloszyn, J. Idea and measurement methods used in bioimpedance spectroscopy. Adv. Intell. Syst. Comput. 2017, 623, 70–78. [Google Scholar]
- Davies, S.J.; Davenport, A. The role of bioimpedance and biomarkers in helping to aid clinical decision-making of volume assessments in dialysis patients. Kidney Int. 2014, 86, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, A. Bioelectric impedance measurement for fluid status assessment. Contrib. Nephrol. 2010, 164, 143–152. [Google Scholar] [PubMed] [Green Version]
- Jaffrin, M.Y.; Morel, H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med. Eng. Phys. 2008, 30, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Demura, S.; Sato, S.; Kitabayashi, T. Percentage of total body fat as estimated by three automatic bioelectrical impedance analyzers. J. Physiol. Anthropol. Appl. Hum. Sci. 2004, 23, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Cha, K.; Chertow, G.M.; Gonzalez, J.; Lazarus, J.M.; Wilmore, D.W. Multifrequency bioelectrical impedance estimates the distribution of body water. J. Appl. Physiol. 1995, 79, 1316–1319. [Google Scholar] [CrossRef]
- Groenendaal, W.; Lee, S.; van Hoof, C. Wearable bioimpedance monitoring: Viewpoint for application in chronic conditions. JMIR Biomed. Eng. 2021, 6, e22911. [Google Scholar] [CrossRef]
- Sel, K.; Osman, D.; Jafari, R. Non-invasive cardiac and respiratory activity assessment from various human body locations using bioimpedance. IEEE Open J. Eng. Med. Biol. 2021, 2, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Zink, M.D.; König, F.; Weyer, S.; Willmes, K.; Leonhardt, S.; Marx, N.; Napp, A. Segmental bioelectrical impedance spectroscopy to monitor fluid status in heart failure. Sci. Rep. 2020, 10, 3577. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.T.; Reid, J.; Makrides, M.; Lingwood, B.E.; McPhee, A.J.; Morris, S.A.; Gibson, R.A.; Ward, L.C. Prediction of body water compartments in preterm infants by bioelectrical impedance spectroscopy. Eur. J. Clin. Nutr. 2013, 67, S47–S53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwosu, A.C.; Mayland, C.R.; Mason, S.; Cox, T.F.; Varro, A.; Ellershaw, J. The association of hydration status with physical signs, symptoms and survival in advanced cancer—The use of bioelectrical impedance vector analysis (BIVA) technology to evaluate fluid volume in palliative care: An observational study. PLoS ONE 2016, 11, e0163114. [Google Scholar] [CrossRef] [Green Version]
- Toso, S.; Piccoli, A.; Gusella, M.; Menon, D.; Crepaldi, G.; Bononi, A.; Ferrazzi, E. Bioimpedance vector pattern in cancer patients without disease versus locally advanced or disseminated disease. Nutrition 2003, 19, 510–514. [Google Scholar] [CrossRef]
- Nescolarde, L.; Piccoli, A.; Román, A.; Núñez, A.; Morales, R.; Tamayo, J.; Doñate, T.; Rosell, J. Bioelectrical impedance vector analysis in haemodialysis patients: Relation between oedema and mortality. Physiol. Meas. 2004, 25, 1271–1280. [Google Scholar] [CrossRef]
- Piccoli, A.; Italian CAPD-BIA Study Group. Bioelectric impedance vector distribution in peritoneal dialysis patients with different hydration status. Kidney Int. 2004, 65, 1050–1063. [Google Scholar] [CrossRef] [Green Version]
- Bozzetto, S.; Piccoli, A.; Montini, G. Bioelectrical impedance vector analysis to evaluate relative hydration status. Pediatr. Nephrol. 2010, 25, 329–334. [Google Scholar] [CrossRef]
- Da Fonseca, R.D.; Santos, P.R.; Monteiro, M.S.; Fernandes, L.A.; Campos, A.H.; Borges, D.L.; Rosa, S.S.R.F. Parametric evaluation of impedance curve in radiofrequency ablation: A quantitative description of the asymmetry and dynamic variation of impedance in bovine ex vivo model. PLoS ONE 2021, 16, e0245145. [Google Scholar] [CrossRef]
- Barkagan, M.; Rottmann, M.; Leshem, E.; Shen, C.; Buxton, A.E.; Anter, E. Effect of baseline impedance on ablation lesion dimensions: A multimodality concept validation from physics to clinical experience. Circ. Arrhythm. Electrophysiol. 2018, 11, e006690. [Google Scholar] [CrossRef]
- Sulkin, M.S.; Laughner, J.I.; Hilbert, S.; Kapa, S.; Kosiuk, J.; Younan, P.; Romero, I.; Shuros, A.; Hamann, J.J.; Hindricks, G.; et al. Novel measure of local impedance predicts catheter—Tissue contact and lesion formation. Circ. Arrhythm. Electrophysiol. 2018, 11, e005831. [Google Scholar] [CrossRef]
- Chinitz, J.S.; Michaud, G.F.; Stephenson, K. Impedance-guided radiofrequency ablation: Using impedance to improve ablation outcomes. Innov. Card. Rhythm. Manag. 2017, 8, 2868–2873. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Ueno, A. Capacitive-coupling impedance spectroscopy using a non-sinusoidal oscillator and discrete-time Fourier transform: An introductory study. Sensors 2020, 20, 6392. [Google Scholar] [CrossRef]
- Takano, M.; Ueno, A. Noncontact in-bed measurements of physiological and behavioral signals using an integrated fabric-sheet sensing scheme. IEEE J. Biomed. Health Inform. 2019, 23, 618–630. [Google Scholar] [CrossRef]
- Elghajiji, A.; Wang, X.; Weston, S.D.; Zeck, G.; Hengerer, B.; Tosh, D.; Rocha, P.R.F. Electrochemical impedance spectroscopy as a tool for monitoring cell differentiation from floor plate progenitors to midbrain neurons in real time. Adv. Biol. 2021, 5, 2100330. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Nakamura, T.; Kusuhara, T.; Kenichi, K.; Kuniyasu, K.; Kawashima, T.; Hanayama, K. Effectiveness of impedance parameters for muscle quality evaluation in healthy men. J. Physiol. Sci. 2020, 70, 53. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Wang, C.; Zhao, R.; Du, L.; Fang, Z.; Guo, X.; Zhao, Z. Review of stratum corneum impedance measurement in non-invasive penetration application. Biosensors 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Balaguera, E.; López-Dolado, E.; Polo, J.L. Obtaining electrical equivalent circuits of biological tissues using the current interruption method, circuit theory and fractional calculus. RSC Adv. 2016, 6, 22312. [Google Scholar] [CrossRef]
- Münkler, P.; Gunawardene, M.A.; Jungen, C.; Klatt, N.; Schwarzl, J.M.; Akbulak, R.Ö.; Dinshaw, L.; Hartmann, J.; Jularic, M.; Kahle, A.K.; et al. Local impedance guides catheter ablation in patients with ventricular tachycardia. J. Cardiovasc. Electrophysiol. 2020, 31, 61–69. [Google Scholar] [CrossRef]
Mode | SW1 | SW2 | |||
---|---|---|---|---|---|
1 | 0 | 0 | OFF | OFF | |
2 | 0 | 1 | OFF | ON | |
3 | 1 | 0 | ON | OFF | |
4 | 1 | 1 | ON | ON |
Set | (kΩ) | (kΩ) | (kΩ) | 4 Modes of
(kΩ) | Estimated Oscillation Frequencies (kHz) |
---|---|---|---|---|---|
1 | 3.3 | 1.8 | 3 | 8.1, 6.3, 5.1, 3.3 | 16.9, 22.3, 28.4, 47.9 |
2 | 5.1 | 1 | 2 | 8.1, 7.1, 6.1, 5.1 | 16.9, 19.5, 23.1, 28.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, T.; Ogawa, E.; Ueno, A. Short-Time Impedance Spectroscopy Using a Mode-Switching Nonsinusoidal Oscillator: Applicability to Biological Tissues and Continuous Measurement. Sensors 2021, 21, 6951. https://doi.org/10.3390/s21216951
Yamaguchi T, Ogawa E, Ueno A. Short-Time Impedance Spectroscopy Using a Mode-Switching Nonsinusoidal Oscillator: Applicability to Biological Tissues and Continuous Measurement. Sensors. 2021; 21(21):6951. https://doi.org/10.3390/s21216951
Chicago/Turabian StyleYamaguchi, Tomiharu, Emiyu Ogawa, and Akinori Ueno. 2021. "Short-Time Impedance Spectroscopy Using a Mode-Switching Nonsinusoidal Oscillator: Applicability to Biological Tissues and Continuous Measurement" Sensors 21, no. 21: 6951. https://doi.org/10.3390/s21216951
APA StyleYamaguchi, T., Ogawa, E., & Ueno, A. (2021). Short-Time Impedance Spectroscopy Using a Mode-Switching Nonsinusoidal Oscillator: Applicability to Biological Tissues and Continuous Measurement. Sensors, 21(21), 6951. https://doi.org/10.3390/s21216951