Mineral Interpretation Discrepancies Identified between Infrared Reflectance Spectra and X-ray Diffractograms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Rock and Powder Samples
2.2. SPECIM Data Acquisition and Mineral Mapping
2.3. XRD Setup
3. Results
3.1. SPECIM Mineral Maps
3.2. XRD Mineral Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simpson, M.P.; Rae, A.J. Short-wave infrared (SWIR) reflectance spectrometric characterisation of clays from geothermal systems of the Taupō Volcanic Zone, New Zealand. Geothermics 2018, 73, 74–90. [Google Scholar] [CrossRef]
- Jeong, Y.; Yu, J.; Wang, L.; Shin, J.H. Spectral responses of As and Pb contamination in tailings of a hydrothermal ore deposit: A case study of Samgwang mine, South Korea. Remote Sens. 2018, 10, 1830. [Google Scholar] [CrossRef] [Green Version]
- Maghsoudi Moud, F.; van Ruitenbeek, F.; Hewson, R.; van der Meijde, M. An approach to accuracy assessment of mineral maps derived from ASTER images. Remote Sens. 2021, 13, 2499. [Google Scholar] [CrossRef]
- Hosseinjani Zadeh, M.; Honarmand, M. A remote sensing-based discrimination of high-and low-potential mineralization for porphyry copper deposits; a case study from Dehaj–Sarduiyeh copper belt, SE Iran. Eur. J. Remote Sens. 2017, 50, 332–342. [Google Scholar] [CrossRef]
- Brindley, G.W. Identification of Clay Minerals by X-Ray Diffraction Analysis. Clay Min. 1952, 1, 119–129. [Google Scholar] [CrossRef]
- Kittrick, J.A.; Hope, E.W. A procedure for the particle-size separation of soils for X-ray diffraction analysis. Soil Sci. 1963, 96, 319–325. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis: Advanced Course; UW-Madison Libraries Parallel Press: Madison, WI, USA, 2005. [Google Scholar]
- Van Ruitenbeek, F.J.; Bakker, W.H.; van der Werff, H.M.; Zegers, T.E.; Oosthoek, J.H.; Omer, Z.A.; van der Meer, F.D. Mapping the wavelength position of deepest absorption features to explore mineral diversity in hyperspectral images. Planet. Space Sci. 2014, 101, 108–117. [Google Scholar] [CrossRef]
- Van Ruitenbeek, F.J.A.; van der Werff, H.M.A.; Bakker, W.H.; van der Meer, F.D.; Hein, K.A.A. Measuring rock microstructure in hyperspectral mineral maps. Remote Sens. Environ. 2019, 220, 94–109. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Pontual, S.; Merry, N.; Gamson, P. Spectral interpretation field manual, G-MEX. In Spectral Analysis Guides for Mineral Exploration; AusSpec Int. Pty. Ltd.: Melbourne, Australia, 1997; Volume 1, p. 169. [Google Scholar]
- Bishop, J.L.; Lane, M.D.; Dyar, M.D.; Brown, A.J. Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [Google Scholar] [CrossRef]
- Gomez, C.; Adeline, K.; Bacha, S.; Driessen, B.; Gorretta, N.; Lagacherie, P.; Briottet, X. Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios. Remote Sens. Environ. 2018, 204, 18–30. [Google Scholar] [CrossRef]
- Ducasse, E.; Adeline, K.; Briottet, X.; Hohmann, A.; Bourguignon, A.; Grandjean, G. Montmorillonite Estimation in Clay–Quartz–Calcite Samples from Laboratory SWIR Imaging Spectroscopy: A Comparative Study of Spectral Preprocessings and Unmixing Methods. Remote Sens. 2020, 12, 1723. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Chen, P.Y. Table of Key Lines in X-ray Powder Diffraction Patterns of Minerals in Clays and Associated Rocks; Indiana Geological & Water Survey: Bloomington, IN, USA, 1977; pp. 1–67. [Google Scholar]
- Šucha, V.; Środoń, J.; Clauer, N.; Elsass, F.; Eberl, D.D.; Kraus, I.; Madejová, J. Weathering of smectite and illite-smectite under temperate climatic conditions. Clay Miner. 2001, 36, 403–419. [Google Scholar] [CrossRef]
- Velde, B.; Meunier, A. Clay mineral formation in weathered rocks: Water/rock interaction. In The Origin of Clay Minerals in Soils and Weathered Rocks; Springer: Berlin/Heidelberg, Germany, 2008; pp. 143–239. [Google Scholar]
- Beavis, F.C.; Roberts, F.I.; Minskaya, L. Engineering aspects of weathering of low-grade metapelites in an arid climatic zone. Q. J. Eng. Geol. Hydrogeol. 1982, 15, 29–45. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Ayoobi, I.; Tangestani, M.H. Evaluating the effect of spatial subsetting on subpixel unmixing methodology applied to ASTER over a hydrothermally altered terrain. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 1–7. [Google Scholar] [CrossRef]
- Mulder, V.L.; De Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Possenti, E.; Conti, C.; Gatta, G.D.; Merlini, M.; Realini, M.; Colombo, C. Synchrotron radiation μ X-ray diffraction in transmission geometry for investigating the penetration depth of conservation treatments on cultural heritage stone materials. Anal. Methods 2020, 12, 1587–1594. [Google Scholar] [CrossRef]
- Vyverberg, K.L.; Jaeger, J.M.; Dutton, A. Quantifying detection limits and uncertainty in X-Ray diffraction mineralogical assessments of biogenic carbonates. J. Sediment. Res. 2018, 88, 1261–1275. [Google Scholar] [CrossRef]
- Datech Scientific Limited. Available online: http://www.datech-scientific.co.uk/analysis/xrd/ (accessed on 7 July 2021).
- Pontual, S.; Merry, N.; Gamson, P. Near Surface Weathering Environments; AusSpec Int. Pty. Ltd.: Melbourne, Australia, 1997; Volume 5, p. 73. [Google Scholar]
- Maleki, S.; Karimi-Jashni, A. Effect of ball milling process on the structure of local clay and its adsorption performance for Ni (II) removal. Appl. Clay Sci. 2017, 137, 213–224. [Google Scholar] [CrossRef]
- Ionescu, C.; Höck, V.; Simon, V. Effect of the temperature and the heating time on the composition of an illite-rich clay: An XRPD study. Babes-Bolyai Phys. 2011, 56, 70. [Google Scholar]
- Steele, D.; Farrokhpay, S.; Ndlovu, B.; Bradshaw, D. Clay sample preparation treatment for XRD analysis. In Proceedings of the IMPC 2018-29th International Mineral Processing Congress, Moscow, Russia, 17–21 September 2018; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2018; pp. 97–107. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghsoudi Moud, F.; Deon, F.; van der Meijde, M.; van Ruitenbeek, F.; Hewson, R. Mineral Interpretation Discrepancies Identified between Infrared Reflectance Spectra and X-ray Diffractograms. Sensors 2021, 21, 6924. https://doi.org/10.3390/s21206924
Maghsoudi Moud F, Deon F, van der Meijde M, van Ruitenbeek F, Hewson R. Mineral Interpretation Discrepancies Identified between Infrared Reflectance Spectra and X-ray Diffractograms. Sensors. 2021; 21(20):6924. https://doi.org/10.3390/s21206924
Chicago/Turabian StyleMaghsoudi Moud, Fardad, Fiorenza Deon, Mark van der Meijde, Frank van Ruitenbeek, and Rob Hewson. 2021. "Mineral Interpretation Discrepancies Identified between Infrared Reflectance Spectra and X-ray Diffractograms" Sensors 21, no. 20: 6924. https://doi.org/10.3390/s21206924