Monitoring the Growth of a Microbubble Generated Photothermally onto an Optical Fiber by Means Fabry–Perot Interferometry
Abstract
:1. Introduction
2. Operation Principle
3. Experimental Setup
4. Results and Discussions
5. Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zucco, M.; Pisani, M.; Caricato, V.; Egidi, A. A hyperspectral imager based on a Fabry-Perot interferometer with dielectric mirrors. Opt. Express 2014, 22, 34–40. [Google Scholar] [CrossRef]
- An, J.; Pyun, K.; Kwon, O.; Kim, D.E. An autocorrelator based on a Fabry-Perot interferometer. Opt. Express 2013, 21, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Iordachita, I.I.; He, X.; Taylor, R.H.; Kang, J.U. Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery. Biomed. Opt. Express 2012, 3, 1062–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, K.E.; Uddin, N.; Kim, T.H.; Fan, Q.H.; Yoon, H.J. Highly sensitive detection of biological substances using microfluidic enhanced Fabry-Perot etalon-based optical biosensors. Sens. Actuators B Chem. 2018, 277, 62–68. [Google Scholar] [CrossRef]
- Rho, D.; Breaux, C.; Kim, S. Label-Free Optical Resonator-Based Biosensors. Sensors 2020, 20, 5901. [Google Scholar] [CrossRef]
- Fang, J.X.; Taylor, H.F.; Choi, H.S. Fiber-optic Fabry–Perot flow sensor. Microw. Opt. Technol. Lett. 1998, 18, 209–211. [Google Scholar] [CrossRef]
- Xiao, G.Z.; Adnet, A.; Zhang, Z.; Lu, Z.; Grover, C.P. Fiber-optic Fabry–Perot interferometric gas-pressure sensors embedded in pressure fittings. Microw. Opt. Technol. Lett. 2004, 42, 486–489. [Google Scholar] [CrossRef]
- Listewnik, P.; Bechelany, M.; Jasinski, J.B.; Szczerska, M. ZnO ALD-Coated Microsphere-Based Sensors for Temperature Measurements. Sensors 2020, 20, 4689. [Google Scholar] [CrossRef]
- Kim, D.W.; Zhan, Y.; Cooper, K.L.; Wang, A. In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement. Appl. Opt. 2005, 44, 5368–5373. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Yam, S.S.H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Oleschuk, R.D. Refractive index sensing with Mach-Zehnder interferometer based on concatenating two singlemode fiber tapers. IEEE Photon. Technol. Lett. 2008, 20, 626–628. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, W.; Wu, N.; Zou, X.; Guthy, C.; Wang, X. A miniature fiber optic refractive index sensor built in a MEMS-based microchannel. Sensors 2011, 11, 1078–1087. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.L.; Chang, H.J.; You, Y.W.; Chen, G.H.; Hsu, J.M.; Horng, J.S. Fiber Fabry-Perot interferometers based on air-bubbles/liquid in hollowcore fibers. IEEE Photon. Technol. Lett. 2014, 26, 749–752. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.N.; Wang, C.; Hu, T. Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity. Opt. Express 2013, 21, 14084–14089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, D.W.; Rao, Y.; Hou, Y.S.; Zhu, T. Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement. Appl. Opt. 2012, 51, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Rodriguez, E.; Guzman-Chavez, A.; Cano-Contreras, M.; Gallegos-Arellano, E.; Jauregui-Vazquez, D.; Hernández-García, J.; Rojas-Laguna, R. Analytical Modelling of a Refractive Index Sensor Based on an Intrinsic Micro Fabry-Perot Interferometer. Sensors 2015, 15, 26128–26142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estudillo-Ayala, J.M.; Jáuregui-Vázquez, D.; Haus, J.W.; Pérez-Maciel, M.; Sierra-Hernández, J.M.; Ávila-García, M.S.; Hernández-García, J.C. Multi-wavelength fiber laser based on a fiber Fabry–Perot interferometer. Appl. Phys. B 2015, 121, 407–412. [Google Scholar] [CrossRef]
- Lee, C.L.; Zheng, Y.C.; Ma, C.L.; Chang, H.J.; Lee, C.F. Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter. Appl. Phys. Lett. 2013, 102, 193504–193507. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.L.; Gong, Y.; Wu, Y.; Rao, Y.J.; Peng, G.D.; Fan, X. Lab-on-tip based on photothermal microbubble generation for concentration detection. Sens. Actuators B Chem. 2018, 255, 2504–2509. [Google Scholar] [CrossRef]
- Zhang, C.L.; Gong, Y.; Zou, W.L.; Wu, Y.; Rao, Y.J.; Peng, G.D.; Fan, X. Microbubble-Based Fiber Optofluidic Interferometer for Sensing. J. Light. Technol. 2017, 35, 2514–2519. [Google Scholar] [CrossRef]
- Andrés, M.V.; Tudor, M.J.; Foulds, K.W.H. Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors. Electron. Lett. 1987, 23, 774–775. [Google Scholar] [CrossRef]
- Zaca-Morán, P.; Ramos-Garcia, R.; Ortega-Mendoza, J.G.; Chávez, F.; Pérez-Sánchez, G.F.; Felipe, C. Saturable and two-photon absorption in zinc nanoparticles photodeposited onto the core of an optical fiber. Opt. Express 2015, 23, 18721–18729. [Google Scholar] [CrossRef] [PubMed]
- Zaca-Morán, P.; Ortega-Mendoza, J.G.; Lozano-Perera, G.J.; Gómez-Pavón, L.C.; Pérez-Sánchez, G.F.; Padilla-Martínez, J.P.; Felipe, C. Passively Q-switched erbium-doped fiber laser based on Zn nanoparticles as a saturable absorber. Laser Phys. 2017, 27, 105101–105105. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Mendoza, J.G.; Chávez, F.; Zaca-Morán, P.; Felipe, C.; Pérez-Sánchez, G.F.; Beltran-Pérez, G.; Ramos-Garcia, R. Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber. Opt. Express 2013, 21, 6509–6518. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Mendoza, J.G.; Sarabia-Alonso, J.A.; Zaca-Morán, P.; Padilla-Vivanco, A.; Toxqui-Quitl, C.; Rivas-Cambero, I.; Ramos-García, R. Marangoni force-driven manipulation of photothermally-induced microbubbles. Opt. Express 2018, 26, 6653–6662. [Google Scholar] [CrossRef]
- Muñoz-Pérez, J.E.; Cruz, J.L.; Andrés, M.V.; Ortega-Mendoza, J.G. Conic optical fiber probe for generation and characterization of microbubbles in liquids. Sens. Actuators A Phys. 2021, 317, 112441. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Mendoza, J.G.; Zaca-Morán, P.; Padilla-Martínez, J.P.; Muñoz-Pérez, J.E.; Cruz, J.L.; Andrés, M.V. Monitoring the Growth of a Microbubble Generated Photothermally onto an Optical Fiber by Means Fabry–Perot Interferometry. Sensors 2021, 21, 628. https://doi.org/10.3390/s21020628
Ortega-Mendoza JG, Zaca-Morán P, Padilla-Martínez JP, Muñoz-Pérez JE, Cruz JL, Andrés MV. Monitoring the Growth of a Microbubble Generated Photothermally onto an Optical Fiber by Means Fabry–Perot Interferometry. Sensors. 2021; 21(2):628. https://doi.org/10.3390/s21020628
Chicago/Turabian StyleOrtega-Mendoza, J. Gabriel, Placido Zaca-Morán, J. Pablo Padilla-Martínez, Josué E. Muñoz-Pérez, José Luis Cruz, and Miguel V. Andrés. 2021. "Monitoring the Growth of a Microbubble Generated Photothermally onto an Optical Fiber by Means Fabry–Perot Interferometry" Sensors 21, no. 2: 628. https://doi.org/10.3390/s21020628
APA StyleOrtega-Mendoza, J. G., Zaca-Morán, P., Padilla-Martínez, J. P., Muñoz-Pérez, J. E., Cruz, J. L., & Andrés, M. V. (2021). Monitoring the Growth of a Microbubble Generated Photothermally onto an Optical Fiber by Means Fabry–Perot Interferometry. Sensors, 21(2), 628. https://doi.org/10.3390/s21020628