# Discovering the Value Creation System in IoT Ecosystems

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. IoT Home Market Evolution

## 3. IoT Home Analysis

#### 3.1. Evaluation Subsystem

#### 3.1.1. Technology Innovation Index

#### 3.1.2. Value Offer Performance

#### 3.1.3. Discourse Universe and Linguistic Variable

#### 3.1.4. Membership Function

#### 3.1.5. Input Variables

#### 3.1.6. Outputs Variables

#### 3.2. Forrester Diagram

- The value creation dynamics are influenced by the number of new connections given in the ecosystem.
- The technological platform is the integrated ecosystem enabler. There are two platforms that work together, one is oriented to the internal processes of the company and the other to the consumer (the connected home).
- The configuration of the value offer and technology management defines the power of the value creation system.
- The power (or theoretical performance) of the value creation system is moved in a fuzzy group of possible values.

## 4. Discussion

#### 4.1. Simulation and Sensitivity Analysis

- K is the “loading capacity” of the system.
- C is the acquired constant in the integration process.
- R(t) is the number of capture cycles in the t time.
- r is the coefficient that indicates the magnitude of the growth potential of each value capture.

#### 4.2. Network Effect

#### Demand Estimation in White Goods Companies

- $\mu $ Is a constant.
- ${\phi}_{1}{y}_{t-1}+\dots +{\phi}_{\mathrm{p}}{y}_{t-\mathrm{p}}$ Are the auto-regressive terms (lagged values of y).
- ${\theta}_{1}{e}_{t-1}\dots -{\theta}_{\mathrm{q}}{e}_{t-\mathrm{q}}$ Are the mobile media terms (lagged mistakes).
- ${e}_{t}$ Error or stochastic disturbance.

#### 4.3. Value Forecast Analysis

- Value per home = income obtained through the commercialization of digital services in the home.
- Fixed cost per home = are the expenses that remain constant despite the quantity of commercialized services.
- Contribution margin per home = the difference between the incomes (billing) and other variable costs.

- $Valu{e}_{t}=$ Value quantity forecast.
- VU = Value unit, represent the theoretical value of an actionable intelligence Flow.
- R = Value capture cycles.
- N = Network effect calculation.
- $VC$ = Captured value.

## 5. Theoretical Implications

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Mazhelis, O.; Luoma, E.; Warma, H. Defining an internet-of-things ecosystem. In Internet of Things, Smart Spaces, and Next Generation Networking; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–14. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. Understanding the Internet of Things: Definition, potentials, and societal role of a fast evolving paradigm. Ad. Hoc. Netw.
**2017**, 56, 122–140. [Google Scholar] [CrossRef] - Tafti, S.F.; Kordnaeij, A.; Hoseini, S.H.K.; Jamali, M. Business Ecosystem as a New Approach in Strategy. Manag. Adm. Sci. Rev.
**2015**, 4, 198–205. [Google Scholar] - Moore, J.F. Predators and prey: A new ecology of competition. Harv. Bus. Rev.
**1993**, 71, 75–83. [Google Scholar] [PubMed] - Iansiti, M.; Lakhani, K.R. Competing in a Age of AI. Harv. Bus. Rev.
**2020**, 98, 59–67. [Google Scholar] - Porter, M.E.; Heppelmann, J.E. How smart, connected products are transforming companies. Harv. Bus. Rev.
**2015**, 93, 96–114. [Google Scholar] - Holdowsky, J.; Mahto, M.; Raynor, M.E.; Cotteleer, M. Inside the Internet of Things (IoT); Deloitte University Press: London, UK, 2015. [Google Scholar]
- Casado-Vara, R.; Chamoso, P.; De la Prieta, F.; Prieto, J.; Corchado, J.M. Non-linear adaptive closed-loop control system for improved efficiency in IoT-blockchain management. Inf. Fusion
**2019**, 49, 227–239. [Google Scholar] [CrossRef] - Henze, M.; Hermerschmidt, L.; Kerpen, D.; Häußling, R.; Rumpe, B.; Wehrle, K. A comprehensive approach to privacy in the cloud-based Internet of Things. Future Gener. Comput. Syst.
**2016**, 56, 701–718. [Google Scholar] [CrossRef][Green Version] - Vial, G. Understanding digital transformation: A review and a research agenda. J. Strat. Inf. Syst.
**2019**, 28, 118–144. [Google Scholar] [CrossRef] - Rachinger, M.; Rauter, R.; Müller, C.; Vorraber, W.; Schirgi, E. Digitalization and its influence on business model innovation. J. Manuf. Technol. Manag.
**2019**, 30, 1143–1160. [Google Scholar] [CrossRef] - Bouwman, H.; Nikou, S.; de Reuver, M. Digitalization, Business Models, and Smes: How Do Business Model Innovation Practices Improve Performance of Digitalizing Smes? Telecommun. Policy
**2019**, 43, 101828. [Google Scholar] [CrossRef] - Yigitcanlar, T.; Butler, L.; Windle, E.; DeSouza, K.C.; Mehmood, R.; Corchado, J.M. Can Building “Artificially Intelligent Cities” Safeguard Humanity from Natural Disasters, Pandemics, and Other Catastrophes? An Urban Scholar’s Perspective. Sensors
**2020**, 20, 2988. [Google Scholar] [CrossRef] [PubMed] - United Nations. Digital Economy Report 2019; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Parida, V.; Sjödin, D.R.; Reim, W. Reviewing Literature on Digitalization, Business Model Innovation, and Sustainable Industry: Past Achievements and Future Promises; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2019. [Google Scholar]
- Reddy, S.K.; Reinartz, W. Digital transformation and value creation: Sea change ahead. Mark. Intell. Rev.
**2017**, 9, 10–17. [Google Scholar] [CrossRef][Green Version] - Reinartz, W.; Wiegand, N.; Imschloss, M. The impact of digital transformation on the retailing value chain. Int. J. Res. Mark.
**2019**, 36, 350–366. [Google Scholar] [CrossRef] - Sarkar, S.; Misra, S. Theoretical modelling of fog computing: A green computing paradigm to support IoT applications. IET Netw.
**2016**, 5, 23–29. [Google Scholar] [CrossRef][Green Version] - Abdmeziem, M.; Tandjaoui, D.; Romdhani, I. Architecting the Internet of Things: State of the Art. In Robots and Sensor Clouds; Koubaa, A., Shakshuki, E., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 55–75. [Google Scholar]
- Tavalaei, M.M. Waiting time in two-sided platforms: The case of the airport industry. Technol. Forecast. Soc. Chang.
**2020**, 159, 120181. [Google Scholar] [CrossRef] - Li, X.; Cao, J.; Liu, Z.; Luo, X. Sustainable Business Model Based on Digital Twin Platform Network: The Inspiration from Haier’s Case Study in China. Sustainability
**2020**, 12, 936. [Google Scholar] [CrossRef][Green Version] - APPLIA, by the NUMBERS: The Home Appliance Industry in Europe, 2018–2019; APPLIA Home Appliances Europe. 2020. Available online: https://applia-europe.eu/ (accessed on 1 November 2020).
- Larrosa, J.M.C. Leyes de valoración de redes. Redes de Ingeniería
**2016**, 7, 183. [Google Scholar] [CrossRef][Green Version] - da Costa Fernandes, S.; Pigosso, D.C.; McAloone, T.C.; Rozenfeld, H. Towards product-service system oriented to circular economy: A systematic review of value proposition design approaches. J. Clean. Prod.
**2020**, 257, 120507. [Google Scholar] [CrossRef] - Antonopoulou, K.; Begkos, C. Strategizing for digital innovations: Value propositions for transcending market boundaries. Technol. Forecast. Soc. Chang.
**2020**, 156, 120042. [Google Scholar] [CrossRef] - Payne, A.; Frow, P.; Steinhoff, L.; Eggert, A. Toward a comprehensive framework of value proposition development: From strategy to implementation. Ind. Mark. Manag.
**2020**, 87, 244–255. [Google Scholar] [CrossRef] - Lopez, C.A.; Castillo, L.F. Value creation system in the connected home ecosystem. J. Ambient. Intell. Humaniz. Comput.
**2020**, 11, 4409–4419. [Google Scholar] [CrossRef] - Zhang, C.-B.; Li, Y.-N.; Wu, B.; Li, D.-J. How WeChat can retain users: Roles of network externalities, social interaction ties, and perceived values in building continuance intention. Comput. Hum. Behav.
**2017**, 69, 284–293. [Google Scholar] [CrossRef] - Rydehell, H.; Löfsten, H.; Isaksson, A. Novelty-oriented value propositions for new technology-based firms: Impact of business networks and growth orientation. J. High Technol. Manag. Res.
**2018**, 29, 161–171. [Google Scholar] [CrossRef] - Van Le, H.; Suh, M.-H. Changing trends in internet startup value propositions, from the perspective of the customer. Technol. Forecast. Soc. Chang.
**2019**, 146, 853–864. [Google Scholar] - Taylor, S.A.; Hunter, G.L.; Zadeh, A.H.; Delpechitre, D.; Lim, J.H. Value propositions in a digitally transformed world. Ind. Mark. Manag.
**2020**, 87, 256–263. [Google Scholar] [CrossRef] - Cunha, L.; Kidanu, D. The Use of Digital Technologies to Improvethe Post-Purchase Phase of a Traditional Company in the White Goods Sector: Case Study on Electrolux. 2017. Available online: https://www.diva-portal.org/smash/get/diva2:1188630/FULLTEXT01.pdf (accessed on 20 January 2019).
- Dunbrack, L.; Ellis, S.; Hand, L.; Knickle, K.; Turner, V. IoT and Digital Transformation: A Tale of Four Industries; IDC White Paper; IDC: Framingham, MA, USA, 2016. [Google Scholar]
- Liu, H.; Purvis, L.; Mason, R.; Wells, P. Developing logistics value propositions: Drawing Insights from a distributed manufacturing solution. Ind. Mark. Manag.
**2020**, 89, 517–527. [Google Scholar] [CrossRef] - Casado-Vara, R.; Rey, A.M.-D.; Affes, S.; Prieto, J.; Corchado, J.M. IoT network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings. Future Gener. Comput. Syst.
**2020**, 102, 965–977. [Google Scholar] [CrossRef] - Fujimoto, R.M.; Carothers, C.; Ferscha, A.; Jefferson, D.; Loper, M.; Marathe, M.; Taylor, S.J. Computational challenges in modeling & simulation of complex systems. In Proceedings of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Lane, D.; Sterman, J. Profiles in Operations Research: Jay Wright Forrester. In Profiles in Operations Research: Pioneers and Innovators; Springer: New York, NY, USA, 2011. [Google Scholar]
- Lyneis, J.M. Business Policy and Strategy, System Dynamics Applications to. Fundam. Astron. Solar Syst. Dyn.
**2020**, 179–207. [Google Scholar] [CrossRef] - Saunders, A.; Brynjolfsson, E. Massachusetts Institute of Technology Valuing Information Technology Related Intangible Assets. MIS Q.
**2016**, 40, 83–110. [Google Scholar] [CrossRef] - Abood, D.; Quilligan, A.; Narsalay, R. Industry X.0 Combine and Conquer, Unlocking the power of digital. In Accenture; Accenture: Dublin, Ireland, 2017. [Google Scholar]
- Merritt, J.; Sarma, S. Realizing the Internet of Things: A Framework for Collective Action; World Economic Forum: Cologny, Switzerland, 2019. [Google Scholar]
- Ikävalko, H.; Turkama, P.; Smedlund, A. Enabling the mapping of Internet of Things ecosystem business models through roles and activities in value co-creation. In Proceedings of the 51st Hawaii International Conference on System Sciences, Waikoloa Village, HI, USA, 2–6 January 2018. [Google Scholar]
- Saenz, H.; Anderson, N.; Ledingham, D.; Supko, M. The “New Normal” Is a Myth. The Future Won’t Be Normal at All; Bain & Company: Boston, MA, USA, 2020. [Google Scholar]
- Zadeh, L.A. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Trans. Syst. Man Cybern.
**1973**, 1973, 28–44. [Google Scholar] [CrossRef][Green Version] - Zimmermann, H.-J. Fuzzy set theory. Wiley Interdiscip. Rev. Comput. Stat.
**2010**, 2, 317–332. [Google Scholar] [CrossRef] - Chen, Z.; Lu, M.; Ming, X.; Zhang, X.; Zhou, T. Explore and evaluate innovative value propositions for smart product service system: A novel graphics-based rough-fuzzy DEMATEL method. J. Clean. Prod.
**2020**, 243, 118672. [Google Scholar] [CrossRef] - Khan, J.; Haleem, A. An integrated ISM and fuzzy MICMAC approach for modelling of the enablers of technology management. Indian J. Appl. Res.
**2013**, 3, 236–242. [Google Scholar] [CrossRef] - Radzicki, M.J. System Dynamics and Its Contribution to Economics and Economic Modeling. Fundam. Astron. Sol. Syst. Dyn.
**2020**, 401–415. [Google Scholar] [CrossRef][Green Version] - Sterman, J. The Dinamics of Growth. In Business Dynamics—Systems Thinking and Modeling for a Complex World; McGraw-Hill Higher Education: New York, NY, USA, 2010; p. 293. [Google Scholar]
- Constantinides, P.; Henfridsson, O.; Parker, G.G. Introduction—Platforms and Infrastructures in the Digital Age. Inf. Syst. Res.
**2018**, 29, 381–400. [Google Scholar] [CrossRef][Green Version] - Parker, G.; Petropoulos, G.; Van Alstyne, M.W. Digital Platforms and Antitrust. SSRN Electron. J.
**2020**. [Google Scholar] [CrossRef] - Tiwana, A. Platform Synergy: Architectural Origins and Competitive Consequences. Inf. Syst. Res.
**2018**, 29, 829–848. [Google Scholar] [CrossRef] - Fainmesser, I.P.; Galeotti, A. Pricing Network Effects: Competition. SSRN Electron. J.
**2016**, 2019. [Google Scholar] [CrossRef] - Ilie, V.; Turel, O. Manipulating user resistance to large-scale information systems through influence tactics. Inf. Manag.
**2020**, 57, 103178. [Google Scholar] [CrossRef] - Hao, S.; Duan, L. Economics of age of information management under network externalities. In Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Catania, Italy, 2–5 July 2019. [Google Scholar] [CrossRef]
- Xue, J.; Liang, X.; Xie, T.; Wang, H. See now, act now: How to interact with customers to enhance social commerce engagement? Inf. Manag.
**2020**, 57, 103324. [Google Scholar] [CrossRef] - Sarkar, S.; Khare, A. Influence of Expectation Confirmation, Network Externalities, and Flow on Use of Mobile Shopping Apps. Int. J. Hum. Comput. Interact.
**2018**, 35, 1449–1460. [Google Scholar] [CrossRef] - Evans, D.S.; Schmalensee, R. Network Effects: March to the Evidence, Not to the Slogans. SSRN Electron. J.
**2017**. [Google Scholar] [CrossRef][Green Version] - Halaburda, H.; Jullien, B.; Yehezkel, Y. Dynamic competition with network externalities: How history matters. RAND J. Econ.
**2020**, 51, 3–31. [Google Scholar] [CrossRef] - Kilimci, Z.H.; Akyuz, A.O.; Uysal, M.O.; Akyokus, S.; Bulbul, B.A.; Ekmis, M.A. An Improved Demand Forecasting Model Using Deep Learning Approach and Proposed Decision Integration Strategy for Supply Chain. Complex
**2019**, 2019, 1–15. [Google Scholar] [CrossRef][Green Version] - Temür, A.S.; Akgün, M.; Temur, G. Predicting housing sales in Turkey using ARIMA, LSTM and hybrid models. J. Bus. Econ. Manag.
**2019**, 20, 920–938. [Google Scholar] [CrossRef][Green Version] - Akdağ, T. Application of sales forecasting techniques for a company in the home appliances. In Institute for Graduate Studies in Pure and Applied Sciences; Marmara University: Istanbul, Turkey, 2019. [Google Scholar]
- Yücesan, M. Forecasting Monthly Sales of White Goods Using Hybrid Arimax and Ann Models. Atatürk Üniv. Sos. Bilimler Enstitüsü Derg.
**2018**, 22, 2603–2617. [Google Scholar] - Lim, C.; Kim, K.-H.; Kim, M.J.; Heo, J.-Y.; Kim, K.-J.; Maglio, P. From data to value: A nine-factor framework for data-based value creation in information-intensive services. Int. J. Inf. Manag.
**2018**, 39, 121–135. [Google Scholar] [CrossRef] - Piscicelli, L.; Ludden, G.D.; Cooper, T. What makes a sustainable business model successful? An empirical comparison of two peer-to-peer goods-sharing platforms. J. Clean. Prod.
**2018**, 172, 4580–4591. [Google Scholar] [CrossRef] - Ahmad, M.; Botzkowski, T.; Klötzer, C.; Papert, M. Behind the Blackbox of Digital Business Models. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020. [Google Scholar]
- Fleisch, E.; Weinberger, M.; Wortmann, F. Business Models and the Internet of Things. In Interoperability and Open-Source Solutions for the Internet of Things; Springer: Berlin/Heidelberg, Germany, 2015; pp. 6–10. [Google Scholar]
- Weill, P.; Woerner, S. What’s Your Digital Business Model? Six Questions to Help You Build the Next-Generation Enterprise; Harvard Business Press: Boston, MA, USA, 2018. [Google Scholar]
- Kraus, S.; Palmer, C.; Kailer, N.; Kallinger, F.L.; Spitzer, J. Digital entrepreneurship. Int. J. Entrep. Behav. Res.
**2018**. [Google Scholar] [CrossRef] - Porter, M.E.; Kramer, M.R. Creating shared value. In Managing Sustainable Business; Springer: Berlin/Heidelberg, Germany, 2019; pp. 323–346. [Google Scholar]

VOP | Fuzzy Groups—FG | Impact on Value Creation |
---|---|---|

VOP < 80% | Unacceptable | Value creation is not sufficient to sustain a balance point. Unacceptable offer competitiveness. |

80% < VOP < 90% | Low | Value creation is low, the offer design mistakes should be corrected. |

90% < VOP < 100% | Acceptable | Value creation has some slight variations, tending toward low, which leads to the revaluation of the competitiveness offer |

100% < VOP < 110% | Outstanding | An acceptable competitive advantage has been achieved; the value creation engine is in the outstanding performance range. |

VOP > 110% | Best in Class | A transient advantage has been achieved, the value creation in the system is excellent, the value development engine is at its highest potential. |

Effectiveness = VOP and TIN Combination | Growth Rate = r | Maximum Capacity = K | Effectiveness = VOP and TIN Combination | Growth Rate = r | Maximum Capacity = K | Effectiveness = VOP and TIN Combination | Growth Rate = r | Maximum Capacity = K |
---|---|---|---|---|---|---|---|---|

5% | 0.22 | 0.10 | 17% | 0.34 | 1.50 | 29% | 0.46 | 4.37 |

6% | 0.23 | 0.15 | 18% | 0.35 | 1.68 | 30% | 0.47 | 4.68 |

7% | 0.24 | 0.22 | 19% | 0.36 | 1.88 | 31% | 0.48 | 5.00 |

8% | 0.25 | 0.30 | 20% | 0.37 | 2.08 | 32% | 0.49 | 5.32 |

9% | 0.26 | 0.40 | 21% | 0.38 | 2.29 | 33% | 0.50 | 5.66 |

10% | 0.27 | 0.50 | 22% | 0.39 | 2.52 | 34% | 0.51 | 6.01 |

11% | 0.28 | 0.61 | 23% | 0.40 | 2.75 | 35% | 0.52 | 6.37 |

12% | 0.29 | 0.74 | 24% | 0.41 | 3.00 | 36% | 0.53 | 6.74 |

13% | 0.30 | 0.87 | 25% | 0.42 | 3.25 | 37% | 0.54 | 7.12 |

14% | 0.31 | 1.01 | 26% | 0.43 | 3.52 | 38% | 0.55 | 7.51 |

15% | 0.32 | 1.17 | 27% | 0.44 | 3.79 | 39% | 0.56 | 7.91 |

16% | 0.33 | 1.33 | 28% | 0.45 | 4.08 | 40% | 0.57 | 8.32 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lopez, C.A.; Castillo, L.F.; Corchado, J.M. Discovering the Value Creation System in IoT Ecosystems. *Sensors* **2021**, *21*, 328.
https://doi.org/10.3390/s21020328

**AMA Style**

Lopez CA, Castillo LF, Corchado JM. Discovering the Value Creation System in IoT Ecosystems. *Sensors*. 2021; 21(2):328.
https://doi.org/10.3390/s21020328

**Chicago/Turabian Style**

Lopez, Carlos Alberto, Luis Fernando Castillo, and Juan M. Corchado. 2021. "Discovering the Value Creation System in IoT Ecosystems" *Sensors* 21, no. 2: 328.
https://doi.org/10.3390/s21020328