Photothermocapillary Method for the Nondestructive Testing of Solid Materials and Thin Coatings
Abstract
:1. Introduction
2. Methods and Materials
2.1. Theory of PTC Effect
2.2. Experimental Setup
2.3. Test Samples
3. Results
3.1. Material Thermal Conductivity and PTC Pattern Diameter
3.2. Evaluating VPC Thickness
3.3. PTC Detection of Defects in Solids
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Karbalaei, A.; Kumar, R.; Cho, H.J. Thermocapillarity in Microfluidics—A Review. Micromachines 2016, 7, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; He, Z.; Choi, S.; Novosselov, I. Characterization of Inkjet-Printed Digital Microfluidics Devices. Sensors 2021, 21, 3064. [Google Scholar] [CrossRef]
- Jasińska, L.; Malecha, K. Microfluidic Modules Integrated with Microwave Components—Overview of Applications from the Perspective of Different Manufacturing Technologies. Sensors 2021, 21, 1710. [Google Scholar] [CrossRef]
- Kalliadasis, S.; Kiyashko, A.; Demekhin, E.A. Marangoni instability of a thin liquid film heated from below by a local heat source. J. Fluid Mech. 2003, 475, 377–408. [Google Scholar] [CrossRef]
- Islam, Z.; Tsui, Y.Y. Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices. Sensors 2016, 16, 1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Chen, P.G.; Ouazzani, J.; Liu, Q. Thermocapillary flow transition in an evaporating liquid layer in a heated cylindrical cell. Int. J. Heat Mass Transf. 2020, 153, 119587. [Google Scholar] [CrossRef] [Green Version]
- Mohammadtabar, A.; Nazaripoor, H.; Riad, A.; Hemmati, A.; Sadrzadeh, M. A numerical study for thermocapillary induced patterning of thin liquid films. Phys. Fluids 2020, 32, 024106. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, X.; Hong, W.; Du, M.; Pan, P.; Sun, J.Z.; Wu, Z.L.; Zheng, Q. Kinetic Insights into Marangoni Effect-Assisted Preparation of Ultrathin Hydrogel Films. Langmuir 2018, 34, 12310–12317. [Google Scholar] [CrossRef] [PubMed]
- Basualdo, F.N.P.; Bolopion, A.; Gauthier, M.; Lambert, P. A microrobotic platform actuated by thermocapillary flows for manipulation at the air-water interface. Sci. Robot. 2021, 6, eabd3557. [Google Scholar] [CrossRef]
- Rashid, N.; Deivasigamani, R.; Wee, M.; Hamzah, A.; Buyong, M. Integration of a Dielectrophoretic Tapered Aluminum Microelectrode Array with a Flow Focusing Technique. Sensors 2021, 21, 4957. [Google Scholar] [CrossRef]
- Maksimov, V.; Sharifulin, T.; Zhidkova, L.; Eloyan, K. Experimental study of moving liquid layer evaporation under gas flow into rectangular minichannel. EPJ Web Conf. 2017, 159, 00033. [Google Scholar] [CrossRef]
- Shmyrov, A. Thermo-capillary flow in a Hele-Show cell as a tool for research of the dynamics of insoluble surfactant monolayer. EPJ Web Conf. 2019, 213, 02073. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Wang, Z.; Zhang, T.; Wei, L. In-fibre particle manipulation and device assembly via laser induced thermocapillary convection. Nat. Commun. 2019, 10, 5206. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, P.S.; Ezquerro, J.M.; Fernández, J.; Rodríguez, J. Thermocapillary effects during the melting of phase-change materials in microgravity: Steady and oscillatory flow regimes. J. Fluid Mech. 2021, 908. [Google Scholar] [CrossRef]
- Mallea, R.T.; Bolopion, A.; Beugnot, J.-C.; Lambert, P.; Gauthier, M. Laser-induced thermocapillary convective flows: A new approach for non-contact actuation at microscale at the fluid/gas interface. IEEE/ASME Trans. Mechatron. 2016, 22, 1. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-C.; Lin, Y.-T.; Truong, C.-M.; Chen, P.-S.; Chiang, H.-K. Development of an Automated Optical Inspection System for Rapidly and Precisely Measuring Dimensions of Embedded Microchannel Structures in Transparent Bonded Chips. Sensors 2021, 21, 698. [Google Scholar] [CrossRef]
- Wang, Z.; Su, H.; Chen, Y.; Li, Y.; Li, S. Heat Transfer and Thermocapillary Flow of a Double-Emulsion Droplet Heated Using an Infrared Laser by the Photothermal Effect: A Numerical Study. Microgravity Sci. Technol. 2021, 33, 1–16. [Google Scholar] [CrossRef]
- Fu, X.; Ba, Y.; Sun, J. Numerical study of thermocapillary migration behaviors of droplets on a grooved surface with a three-dimensional color-gradient lattice Boltzmann model. Phys. Fluids 2021, 33, 062108. [Google Scholar] [CrossRef]
- Grützmacher, P.G.; Jalikop, S.V.; Gachot, C.; Rosenkranz, A. Thermocapillary lubricant migration on textured surfaces—A review of theoretical and experimental insights. Surf. Topogr. Metrol. Prop. 2020, 9, 013001. [Google Scholar] [CrossRef]
- Dai, Q.; Huang, W.; Wang, X.; Khonsari, M. Directional interfacial motion of liquids: Fundamentals, evaluations, and manipulation strategies. Tribol. Int. 2021, 154, 106749. [Google Scholar] [CrossRef]
- Amador, G.J.; Tabak, A.F.; Ren, Z.; Alapan, Y.; Yasa, O.; Sitti, M. Thermocapillary-driven fluid flow within microchannels. arXiv 2018, arXiv:1802.00475. [Google Scholar]
- Yang, S.; Deng, Q.; Xu, Y. Interfacial flow dynamic micro-response and spatiotemporal evolution of flow pattern for thermocapillary–buoyancy convection in a liquid bridge. N. J. Phys. 2020, 22, 083042. [Google Scholar] [CrossRef]
- Kolsi, L.; Algarni, S.; Mohammed, H.A.; Hassen, W.; Lajnef, E.; Aich, W.; Almeshaal, M.A. 3D Magneto-Buoyancy-Thermocapillary Convection of CNT-Water Nanofluid in the Presence of a Magnetic Field. Processes 2020, 8, 258. [Google Scholar] [CrossRef] [Green Version]
- Namura, K.; Nakajima, K.; Kimura, K.; Suzuki, M. Photothermally controlled Marangoni flow around a micro bubble. Appl. Phys. Lett. 2015, 106, 043101. [Google Scholar] [CrossRef] [Green Version]
- Terazima, M.; Hirota, N.; Braslavsky, S.E.; Mandelis, A.; Bialkowski, S.E.; Diebold, G.J.; Miller, R.J.D.; Fournier, D.; Palmer, R.A.; Tam, A. Quantities, terminology, and symbols in photothermal and related spectroscopies (IUPAC Recommendations 2004). Pure Appl. Chem. 2004, 76, 1083–1118. [Google Scholar] [CrossRef]
- Vargas, H.; Miranda, L.C.M. Photothermal techniques applied to thermophysical properties measurements (plenary). Rev. Sci. Instruments 2003, 74, 794–799. [Google Scholar] [CrossRef] [Green Version]
- Bezuglyi, B.A.; Chemodanov, S.I. Effect of delay of the thermocapillary response of a transparent liquid layer during laser heating of the absorbing substrate. Tech. Phys. 2005, 50, 1243–1245. [Google Scholar] [CrossRef]
- Bezuglyi, B.A.; Galashin, E.A.; Dudkin, G.Y. Photocondensation of iodine. JETP Lett. 1975, 22, 33–35. [Google Scholar]
- Da Costa, G.; Calatroni, J. Self-holograms of laser-induced surface depressions in heavy hydrocarbons. Appl. Opt. 1978, 17, 2381–2385. [Google Scholar] [CrossRef]
- Calatroni, J.; Da Costa, G. Interferometric determination of the surface profile of a liquid heated by a laser beam. Opt. Commun. 1982, 42, 5–9. [Google Scholar] [CrossRef]
- Bezuglyi, B.A.; Flyagin, V.M. Thermocapillary convection in a liquid layer with a quasi-point heat source in the substrate. Fluid Dyn. 2007, 42, 978–986. [Google Scholar] [CrossRef]
- Block, M.J.; Harwit, M. Free Surface of Liquids as an Optical Element. J. Opt. Soc. Am. 1958, 48, 480. [Google Scholar] [CrossRef]
- Oron, A.; Davis, S.H.; Bankoff, S.G. Long-scale evolution of thin liquid films. Rev. Mod. Phys. 1997, 69, 931–980. [Google Scholar] [CrossRef] [Green Version]
- Bezuglyi, B.A.; Zykov, A.Y.; Semenov, S.V. Photothermocapillary diagnostics of near-surface flaws in a solid under a varnish-and-paint coating. Russ. J. Nondestruct. Test. 2008, 44, 391–394. [Google Scholar] [CrossRef]
- Bezuglyĭ, B.A.; Zykov, A.Y.; Semenov, S.V.; Bezuglyi, B.A. Photothermocapillary method for detecting foreign inclusions in solids under paint and varnish coatings. Tech. Phys. Lett. 2008, 34, 743–746. [Google Scholar] [CrossRef]
- Bezuglyĭ, B.A.; Zykov, A.Y.; Bezuglyi, B.A. A photothermocapillary method for detecting delamination of paint and varnish coatings. Tech. Phys. Lett. 2009, 35, 650–652. [Google Scholar] [CrossRef]
- Zykov, A.Y.; Ivanova, N.A. Laser-induced thermocapillary convection in thin liquid layers: Effect of thermal conductivity of substrates. Appl. Phys. A 2017, 123, 235. [Google Scholar] [CrossRef]
- Zykov, A.Y.; Ivanova, N.A. Photothermocapillary detection of conductive track ruptures on a printed circuit board coated with a protective film. J. Physics Conf. Ser. 2019, 1421, 012039. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zykov, A.; Vavilov, V.; Kuimova, M. Photothermocapillary Method for the Nondestructive Testing of Solid Materials and Thin Coatings. Sensors 2021, 21, 6671. https://doi.org/10.3390/s21196671
Zykov A, Vavilov V, Kuimova M. Photothermocapillary Method for the Nondestructive Testing of Solid Materials and Thin Coatings. Sensors. 2021; 21(19):6671. https://doi.org/10.3390/s21196671
Chicago/Turabian StyleZykov, Aleksandr, Vladimir Vavilov, and Marina Kuimova. 2021. "Photothermocapillary Method for the Nondestructive Testing of Solid Materials and Thin Coatings" Sensors 21, no. 19: 6671. https://doi.org/10.3390/s21196671
APA StyleZykov, A., Vavilov, V., & Kuimova, M. (2021). Photothermocapillary Method for the Nondestructive Testing of Solid Materials and Thin Coatings. Sensors, 21(19), 6671. https://doi.org/10.3390/s21196671