Efficient Design for Integrated Photonic Waveguides with Agile Dispersion
Abstract
:1. Introduction
2. Principle of Dispersion Inverse Design
2.1. Waveguide Structure for Inverse Design
2.2. Data Generation and Inverse Design Process
2.3. Network for the Inverse Design
3. Results and Analysis
3.1. Inverse Design of As2S3 Waveguide
3.2. Inverse Design of Si3N4 Waveguide
3.3. Influence of Sidewall Angle in Fabrication
3.4. Generation of Frequency Combs via Double Slot Micro-Ring Resonator
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramaswami, R.; Sivarajan, K.; Sasaki, G. Optical Networks: A Practical Perspective; Morgan Kaufmann: Burlington, MA, USA, 2009. [Google Scholar]
- Gunning, F.C.G.; Corbett, B. Time to open the 2-μm window? Opt. Photonics News 2019, 30, 42–47. [Google Scholar] [CrossRef]
- Haus, H.A.; Fujimoto, J.G.; Ippen, E.P. Structures for additive pulse mode locking. J. Opt. Soc. Am. B 1991, 8, 2068–2076. [Google Scholar] [CrossRef]
- Madsen, C.; Lenz, G.; Bruce, A.; Cappuzzo, M.; Gomez, L.; Scotti, R. Integrated all-pass filters for tunable dispersion and dispersion slope compensation. IEEE Photonics Technol. Lett. 1999, 11, 1623–1625. [Google Scholar] [CrossRef]
- Petrov, A.Y.; Eich, M. Dispersion compensation with photonic crystal line-defect waveguides. IEEE J. Sel. Areas Commun. 2005, 23, 1396–1401. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Lu, L.; Li, M.; Wang, J.; Zhou, F.; Dai, J.; Deng, L.; Liu, D. Ultra-flat and broad optical frequency combs generation based on novel dispersion-flattened double-slot microring resonator. Appl. Phys. A 2016, 122, 11. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, C.; Singh, V.; Mu, J.; Yang, C.; Agarwal, A.M.; Kimerling, L.C.; Michel, J. Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator. Opt. Lett. 2013, 38, 5122–5125. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Han, K.; Wang, C.; Jaramillo-Villegas, J.A.; Xue, X.; Bao, C.; Xuan, Y.; Leaird, D.E.; Weiner, A.M.; Qi, M. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Shun, F.; Tanabe, T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics 2020, 9, 1087–1104. [Google Scholar]
- Xue, X.; Xuan, Y.; Liu, Y.; Wang, P.; Chen, S.; Wang, J.; Leaird, D.E.; Qi, M.; Weiner, A.M. Mode-locked dark pulse Kerr combs in normal dispersion microresonators. Nat. Photonics. 2015, 9, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Bao, C.; Xuan, Y.; Han, K.; Leaird, D.E.; Qi, M.; Weiner, A.M. Normal Dispersion High Conversion Efficiency Kerr Comb with 50 GHz Repetition Rate. In Proceedings of the 2017 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 4–19 May 2017; p. SW4N5. [Google Scholar]
- Matsko, A.; Savchenkov, A.A.; Maleki, L. Normal group-velocity dispersion Kerr frequency comb. Opt. Lett. 2012, 37, 43–45. [Google Scholar] [CrossRef]
- Parra-Rivas, P.; Gomila, D.; Knobloch, E.; Coen, S.; Gelens, L. Origin and stability of dark pulse Kerr combs in normal dispersion resonators. Opt. Lett. 2016, 41, 2402–2405. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhou, L.; Lu, L.; Chen, J. Dispersion-engineered Optical Phased Array for Aliasing-free Beam-steering with a Plateau Envelope. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar]
- Yang, M.; Xu, L.; Wang, J.; Liu, H.; Zhou, X.; Li, G.; Zhang, L. An Octave-Spanning Optical Parametric Amplifier Based on a Low-Dispersion Silicon-Rich Nitride Waveguide. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–7. [Google Scholar] [CrossRef]
- Ji, X.; Yao, X.; Gan, Y.; Mohanty, A.; Tadayon, M.A.; Hendon, C.P.; Lipson, M. On-chip tunable photonic delayline. APL Photonics 2019, 4, 090803. [Google Scholar] [CrossRef] [Green Version]
- Dudley, J.M.; Coen, S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett. 2002, 27, 1180–1182. [Google Scholar] [CrossRef]
- Hui, Z.; Yang, M.; Pan, D.; Zhang, T.; Gong, J.; Zhang, M.; Zeng, X. Slot–slot waveguide with negative large and flat dispersion covering C+L+U waveband for on-chip photonic networks. Appl. Opt. 2019, 58, 5728–5739. [Google Scholar] [CrossRef]
- Okawachi, Y.; Saha, K.; Levy, J.S.; Wen, Y.; Lipson, M.; Gaeta, A.L. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 2011, 36, 3398–3400. [Google Scholar] [CrossRef] [Green Version]
- Saha, K.; Okawachi, Y.; Levy, J.S.; Lau, R.K.W.; Luke, K.; Foster, M.A.; Lipson, M.; Gaeta, A.L. Broadband parametric frequency comb generation with a 1-mm pump source. Opt. Express 2012, 10, 26935–26941. [Google Scholar] [CrossRef]
- He, Z.; Du, J.; Chen, X.; Shen, W.; Huang, Y.; Wang, C.; Xu, K.; He, Z. Machine learning aided inverse design for few-mode fiber weak-coupling optimization. Opt. Express 2020, 28, 21668–21681. [Google Scholar] [CrossRef]
- Hao, J.; Zheng, L.; Yang, D.; Guo, Y. Inverse Design of Photonic Crystal Nanobeam Cavity Structure via Deep Neural Network. In Proceedings of the 2019 Asia Communications and Photonics Conference (ACP), Chengdu, China, 2–5 November 2019; p. M4A.296. [Google Scholar]
- Unni, R.; Yao, K.; Zheng, Y. Deep Convolutional Neural Network for the Inverse Design of Layered Photonic Structures. In Proceedings of the 2020 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 10–15 May 2020; p. JW2D.14. [Google Scholar]
- Chen, Y.; Du, J.; Huang, Y.; Xu, K.; He, Z. Intelligent gain flattening in wavelength and space domain for FMF Raman amplification by machine learning based inverse design. Opt. Express 2020, 28, 11911–11920. [Google Scholar] [CrossRef]
- Shen, W.; Zeng, P.; Yang, Z.; Xia, D.; Du, J.; Zhang, B.; Xu, K.; He, Z.; Li, Z. Chalcogenide glass photonic integration for improved 2 μm optical interconnection. Photonics Res. 2020, 8, 1484–1490. [Google Scholar] [CrossRef]
- Almeida, V.R.; Xu, Q.; Barrios, C.A.; Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 2004, 29, 1209–1211. [Google Scholar] [CrossRef]
- Xu, L.; Ni, X.; Liu, B.; Li, Y.; Hu, M. Ultraflat and low dispersion in a horizontal silicon nitride slot waveguide at near-infrared wavelengths. Opt. Eng. 2016, 55, 037109. [Google Scholar] [CrossRef]
- Bao, C.; Yan, Y.; Zhang, L.; Yue, Y.; Ahmed, N.; Agarwal, A.M.; Kimerling, L.C.; Michel, J.; Willner, A.E. Increased bandwidth with flattened and low dispersion in a horizontal double-slot silicon waveguide. J. Opt. Soc. Am. B 2015, 32, 26–30. [Google Scholar] [CrossRef]
- Weber, M.J. Handbook of Optical Material; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning: Adaptive Computation and Machine Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Hayama, Y.; Uchibori, S.; Nakatsuhara, K. Fabrication of Nb2O5 horizontal slot waveguide structures. In Proceedings of the 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), Fukuoka, Japan, 7–11 July 2019; pp. 1–3. [Google Scholar]
- Liu, Y.; Chang, L.; Li, Z.; Liu, L.; Guan, H.; Li, Z. Polarization beam splitter based on a silicon nitride–silica–silicon horizontal slot waveguide. Opt. Lett. 2019, 44, 1335–1338. [Google Scholar] [CrossRef] [PubMed]
- Lugiato, L.A.; Lefever, R. Spatial Dissipative Structures in Passive Optical Systems. Phys. Rev. Lett. 1987, 58, 2209. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Lucas, E.; Pfeiffer, M.H.; Karpov, M.; Anderson, M.; Liu, J.; Geiselmann, M.; Jost, J.D.; Kippenberg, T.J. Intermode Breather Solitons in Optical Micro-resonators. Phys. Rev. X 2017, 7, 041055. [Google Scholar]
Material | Parameter | Min (nm) | Max (nm) |
---|---|---|---|
As2S3 | W | 880 | 975 |
Hs1 | 97 | 122 | |
Hs2 | 102 | 125 | |
H1 | 310 | 340 | |
H2 | 945 | 975 | |
H3 | 310 | 340 | |
Si3N4 | W | 1120 | 1280 |
Hs1 | 155 | 180 | |
Hs2 | 145 | 170 | |
H1 | 300 | 325 | |
H2 | 950 | 975 | |
H3 | 300 | 325 |
Used NN Library | Hidden Layers | Neurons per Layer |
---|---|---|
Keras | 4 | 200 |
Activation function | Loss function | Optimizer |
Relu and Sigmoid | Mean Square Error | Adam algorithm |
Mean Absolute Error (MAE) | Hs1 | Hs2 | H1&H3 | H2 | W |
---|---|---|---|---|---|
As2S3 Slot Waveguide | 0.24 | 0.16 | 0.38 | 0.45 | 0.55 |
Structure (nm) | Hs1 | Hs2 | H1&H3 | H2 | W | |
---|---|---|---|---|---|---|
As2S3 Slot Waveguide | A1 | 111.5 | 112 | 330 | 961 | 930 |
A2 | 114.5 | 105 | 330 | 962 | 907.5 | |
A3 | 104 | 114 | 330 | 1010 | 911 | |
A4 | 101 | 116 | 329 | 919 | 880 | |
A5 | 98 | 114 | 323 | 1037 | 893 | |
A6 | 107 | 116 | 329 | 892 | 898 | |
A7 | 103.5 | 102 | 328 | 960 | 923.5 | |
A8 | 111 | 101.5 | 325 | 958 | 915 | |
A9 | 100 | 123 | 330 | 957 | 880 | |
A10 | 98 | 126 | 330 | 961 | 847 |
Mean Absolute Error (MAE) | Hs1 | Hs2 | H1&H3 | H2 | W |
---|---|---|---|---|---|
Si3N4 Slot Waveguide | 1.27 | 1.88 | 1.13 | 0.99 | 2.33 |
Structure (nm) | Hs1 | Hs2 | H1&H3 | H2 | W | |
---|---|---|---|---|---|---|
Si3N4 Slot Waveguide | B1 | 176.5 | 171.5 | 307 | 941 | 1309 |
B2 | 161 | 149 | 318 | 939.5 | 1131 | |
B3 | 162 | 159.5 | 298 | 979 | 1216.5 | |
B4 | 161 | 172 | 327 | 889 | 1189 | |
B5 | 162 | 156 | 299 | 1035 | 1216.5 | |
B6 | 175 | 159 | 325 | 855 | 1189 | |
B7 | 165 | 147.5 | 307 | 953 | 1293 | |
B8 | 161 | 151 | 306.5 | 937 | 1218 | |
B9 | 168 | 156 | 324 | 938 | 1126 | |
B10 | 183 | 155 | 325 | 935 | 1120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Du, J.; Shen, W.; Liu, J.; He, Z. Efficient Design for Integrated Photonic Waveguides with Agile Dispersion. Sensors 2021, 21, 6651. https://doi.org/10.3390/s21196651
Wang Z, Du J, Shen W, Liu J, He Z. Efficient Design for Integrated Photonic Waveguides with Agile Dispersion. Sensors. 2021; 21(19):6651. https://doi.org/10.3390/s21196651
Chicago/Turabian StyleWang, Zhaonian, Jiangbing Du, Weihong Shen, Jiacheng Liu, and Zuyuan He. 2021. "Efficient Design for Integrated Photonic Waveguides with Agile Dispersion" Sensors 21, no. 19: 6651. https://doi.org/10.3390/s21196651
APA StyleWang, Z., Du, J., Shen, W., Liu, J., & He, Z. (2021). Efficient Design for Integrated Photonic Waveguides with Agile Dispersion. Sensors, 21(19), 6651. https://doi.org/10.3390/s21196651