Modular Robotic Limbs for Astronaut Activities Assistance
Abstract
:1. Introduction
2. The AstroLimbs Design
2.1. The AstroLimbs Concept
2.2. Mechanical Design
3. Method for Autonomous Motion
3.1. Q-Learning Algorithm
3.2. Determination of the States
3.3. Setting of the Actions
3.4. The Construction of Reward Mechanism
3.5. Movement Planning of the AstroLimbs
4. Simulation and Results
4.1. Construction of Simulation Environment
4.2. Training Results and Evaluation
4.3. Simulation Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- SpaceX. Available online: https://www.spacex.com/ (accessed on 20 September 2021).
- Jacobstein, N.; Bellingham, J.; Yang, G.Z. Robotics for space and marine sciences. Sci. Robot. 2017, 2, 5594. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.; Wagstaff, K.L. Robotic space exploration agents. Sci. Robot. 2017, 2, 4831. [Google Scholar] [CrossRef] [PubMed]
- Lester, D.F.; Hodges, K.V.; Anderson, R.C. Exploration telepresence: A strategy for optimizing scientific research at remote space destinations. Sci. Robot. 2017, 2, 4383. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Hawkes, E.W.; Fuller, C.; Estrada, M.A.; Suresh, S.A.; Abcouwer, N.; Han, A.K.; Wang, S.; Ploch, C.J.; Parness, A.; et al. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Sci. Robot. 2017, 2, 4545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Check, E. BioShield defence programme set to fund anthrax vaccine. Nature 2004, 429, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seedhouse, E. Life Support Systems for Humans in Space; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Challenges of Spacewalking—Rick Mastracchio. Available online: https://www.youtube.com/watch?v=rA42dewZLwg (accessed on 20 September 2021).
- Nokleby, S.B. Singularity analysis of the Canadarm2. Mech. Mach. Theory 2007, 42, 442–454. [Google Scholar] [CrossRef]
- Abramovici, A. A Successful Exercise in Cheaper, Faster and (Hopefully) Better Systems Engineering; Springer: Berlin/Heidelberg, Germany, 2000; pp. 177–200. [Google Scholar]
- Bluethmann, W.; Ambrose, R.; Diftler, M.; Askew, S.; Huber, E.; Goza, M.; Rehnmark, F.; Lovchik, C.; Magruder, D. Robonaut: A robot designed to work with humans in space. Auton. Robot. 2003, 14, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Diftler, M.A.; Mehling, J.S.; Abdallah, M.E.; Radford, N.A.; Bridgwater, L.B.; Sanders, A.M.; Askew, R.S.; Linn, D.M.; Yamokoski, J.D.; Permenter, F.A. Robonaut 2—The first humanoid robot in space. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2178–2183. [Google Scholar] [CrossRef]
- Skybot F-850. Available online: https://spectrum.ieee.org/russian-humanoid-robot-to-pilot-soyuz-capsule-to-iss-this-week (accessed on 20 September 2021).
- Zykov, V.; Mytilinaios, E.; Desnoyer, M.; Lipson, H. Evolved and Designed Self-Reproducing Modular Robotics. IEEE Trans. Robot. 2007, 23, 308–319. [Google Scholar] [CrossRef]
- Hoyt, R.P.; Cushing, J.I.; Slostad, J.T.; Jimmerson, G.; Moser, T.; Kirkos, G.; Jaster, M.L.; Voronka, N.R. SpiderFab: An Architecture for Self—Fabricating Space Systems. In Proceedings of the AIAA SPACE 2013 Conference and Exposition, San Diego, CA, USA, 10 September 2013; pp. 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bongard, J.; Zykov, V.; Lipson, H. Resilient machines through continuous self-modeling. Science 2006, 314, 1118–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cully, A.; Clune, J.; Tarapore, D.; Mouret, J.B. Robots that can adapt like animals. Nature 2015, 521, 503–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, G.; De Carlo, M.; van Diggelen, F.; Tomczak, J.M.; Roijers, D.M.; Eiben, A. Learning directed locomotion in modular robots with evolvable morphologies. Appl. Soft Comput. 2021, 111, 107688. [Google Scholar] [CrossRef]
- Eiben, A.E.; Hart, E.; Timmis, J.; Tyrrell, A.M.; Winfield, A.F. Towards Autonomous Robot Evolution. In Software Engineering for Robotics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 29–51. [Google Scholar] [CrossRef]
- NASA’s Ironman. Available online: https://www.nasa.gov/offices/oct/home/feature_exoskeleton.html (accessed on 20 September 2021).
- Parietti, F.; Chan, K.; Asada, H.H. Bracing the human body with supernumerary Robotic Limbs for physical assistance and load reduction. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 141–148. [Google Scholar] [CrossRef]
- Parietti, F.; Asada, H.H. Supernumerary robotic limbs for human body support. IEEE Trans. Robot. 2016, 32, 301–311. [Google Scholar] [CrossRef]
- Parietti, F.; Asada, H.H. Supernumerary robotic limbs for aircraft fuselage assembly: Body stabilization and guidance by bracing. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1176–1183. [Google Scholar] [CrossRef]
- Bonilla, B.L.; Asada, H.H. A robot on the shoulder: Coordinated human-wearable robot control using Coloured Petri Nets and Partial Least Squares predictions. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 119–125. [Google Scholar] [CrossRef]
- Vatsal, V.; Hoffman, G. Wearing your arm on your sleeve: Studying usage contexts for a wearable robotic forearm. In Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August–1 September 2017; pp. 974–980. [Google Scholar] [CrossRef]
- Gopinath, D.; Weinberg, G. A generative physical model approach for enhancing the stroke palette for robotic drummers. Robot. Auton. Syst. 2016, 86, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Saraiji, M.Y.; Fernando, C.L.; Minamizawa, K.; Inami, M. MetaLimbs: Multiple arms interaction metamorphism. In Proceedings of the ACM SIGGRAPH 2017 Emerging Technologies, SIGGRAPH 2017, Los Angeles, CA, USA, 30 July–3 August 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Sasaki, T.; Saraiji, M.H.; Fernando, C.L.; Minamizawa, K.; Inami, M. MetaLimbs: Metamorphosis for multiple arms interaction using artificial limbs. In Proceedings of the ACM SIGGRAPH 2017 Emerging Technologies, SIGGRAPH 2017, Los Angeles, CA, USA, 30 July–3 August 2017; pp. 1–2. [Google Scholar] [CrossRef]
No. | Eq-Coordinate | Action Mode | No. | Eq-Coordinate | Action Mode |
---|---|---|---|---|---|
1 | {1, 0, 0} | A | 8 | {2, 1, −1} | B |
2 | {2, 0, 0} | A | 9 | {1, −1, 1} | C |
3 | {2, 1, 0} | A | 10 | {2, −1, 1} | C |
4 | {1, 1, 0} | A | 11 | {1, −1, −2} | D |
5 | {2, −1, 0} | A | 12 | {2, −1, −2} | D |
6 | {1, −1, 0} | A | 13 | {1, 1, 2} | E |
7 | {1, 1, −1} | B | 14 | {2, 1, 2} | E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zhao, J.; Sui, D.; Wang, T.; Zheng, T.; Zhao, C.; Zhu, Y. Modular Robotic Limbs for Astronaut Activities Assistance. Sensors 2021, 21, 6305. https://doi.org/10.3390/s21186305
Zhao S, Zhao J, Sui D, Wang T, Zheng T, Zhao C, Zhu Y. Modular Robotic Limbs for Astronaut Activities Assistance. Sensors. 2021; 21(18):6305. https://doi.org/10.3390/s21186305
Chicago/Turabian StyleZhao, Sikai, Jie Zhao, Dongbao Sui, Tianshuo Wang, Tianjiao Zheng, Chuanwu Zhao, and Yanhe Zhu. 2021. "Modular Robotic Limbs for Astronaut Activities Assistance" Sensors 21, no. 18: 6305. https://doi.org/10.3390/s21186305
APA StyleZhao, S., Zhao, J., Sui, D., Wang, T., Zheng, T., Zhao, C., & Zhu, Y. (2021). Modular Robotic Limbs for Astronaut Activities Assistance. Sensors, 21(18), 6305. https://doi.org/10.3390/s21186305