DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs
Abstract
:1. Introduction
2. Principle of DFT-Spread Spectrally Overlapped Hybrid OFDM–DFMA PONs
3. Upstream Optimum ONU Operating Conditions
3.1. Simulation Models and Key Parameters
3.2. PAPR Performance of DFT-Spread Hybrid OFDM–DFMA PON
3.3. Optimum Clipping Ratio and DAC/ADC Resolution Bits
4. Upstream DFT-Spread Hybrid OFDM–DFMA PON Performance
4.1. Performance Tolerance to Limited DAC/ADC Quantization Bits
4.2. Upstream Transmission Performance
4.3. Impacts of Digital Filter Parameters on Maximum Aggregated Upstream Transmission Rates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dogra, A.; Jha, R.K.; Jain, S. A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies. IEEE Access 2021, 9, 67512–67547. [Google Scholar] [CrossRef]
- Ruffini, M. Multidimensional convergence in future 5G networks. J. Light. Technol. 2017, 35, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Gavrilovska, L.; Rakovic, V.; Ichkov, A.; Todorovski, D.; Marinova, S. Flexible C-RAN: Radio technology for 5G. In Proceedings of the 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), Niš, Serbia, 18–20 October 2017; pp. 255–264. [Google Scholar]
- Ramantas, K.; Antonopoulos, A.; Kartsakli, E.; Mekikis, P.; Vardakas, J.; Verikoukis, C. A C-RAN based 5G platform with a fully virtualized, SDN controlled optical/wireless fronthaul. In Proceedings of the 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; pp. 1–4. [Google Scholar]
- Fu, M.; Zhuge, Q.; Liu, Q.; Fan, Y.; Zhang, K.; Hu, W. Advanced optical transmission technologies for 5G fronthaul. In Proceedings of the 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Com–puting (PSC), Fukuoka, Japan, 7–11 July 2019; pp. 1–3. [Google Scholar]
- Sankoh, A.; Jin, W.; Zhong, Z.Q.; He, J.; Hong, Y.; Giddings, R.P.; Pierce, I.; O’Sullivan, M.; Lee, J.; Durrant, T.; et al. Hybrid OFDM-Digital filter multiple access PONs utilizing spectrally overlapped digital orthogonal filtering. IEEE Photonics J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Dong, Y.X.; Giddings, R.P.; Tang, J.M. Hybrid OFDM-digital filter multiple access PONs. J. Light. Technol. 2018, 36, 5640–5649. [Google Scholar] [CrossRef] [Green Version]
- Cvijetic, N. OFDM for next generation optical access networks. In Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 6–10 March 2011; pp. 1–30. [Google Scholar]
- Silva, J.A.L.; Cartaxo, A.V.T.; Segatto, M.E.V. A PAPR reduction technique based on a constant envelope OFDM approach for fiber nonlinearity mitigation in optical direct-detection systems. J. Opt. Commun. Netw. 2012, 4, 296–303. [Google Scholar] [CrossRef]
- Vappangi, S.; Mani, V.V. A low PAPR DST-based optical OFDM (OOFDM) for visible light Communication. In Proceedings of the 21st International Symposium on Wireless Personal Multimedia Communications (WPMC), Chiang Rai, Thailand, 25–28 November 2018; pp. 200–205. [Google Scholar]
- Xu, W.; Wu, M.; Zhang, H.; You, X.; Zhao, C. ACO-OFDM-specified recoverable upper clipping with efficient detection for optical wireless communications. IEEE Photonics J. 2014, 6, 1–17. [Google Scholar]
- Popoola, W.O.; Ghassemlooy, Z.; Stewart, B.G. Pilot-Assisted PAPR reduction technique for optical OFDM communication systems. J. Light. Technol. 2014, 32, 1374–1382. [Google Scholar] [CrossRef]
- Nadal, L.; Moreolo, M.S.; Fabrega, J.M.; Junyent, G. Comparison of peak power reduction techniques in optical OFDM systems based on FFT and FHT. In Proceedings of the 13th International Conference on Transparent Optical Networks, Stockholm, Sweden, 26–30 June 2011; pp. 1–4. [Google Scholar]
- Shieh, W.; Tang, Y.; Krongold, B.S. DFT-spread OFDM for optical communications. In Proceedings of the Digest of the 9th International Conference on Optical Internet (COIN), Jeju, Korea, 11–14 July 2010; pp. 1–3. [Google Scholar]
- Bai, R.; Wang, Z.; Jiang, R.; Cheng, J. Interleaved DFT-spread layered/enhanced ACO-OFDM for intensity-modulated direct-detection systems. J. Light. Technol. 2018, 36, 4713–4722. [Google Scholar] [CrossRef]
- Ma, J.; Chen, M.; Wu, K.; He, J. Performance enhancement of probabilistically shaped OFDM enabled by precoding technique in an IM-DD system. J. Light. Technol. 2019, 37, 6063–6071. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.; Chi, N. Demonstration of 4 × 128-Gb/s DFT-S OFDM signal transmission over 320-km SMF with IM/DD. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, X.; Huang, Z.R.; Yu, J.; Li, F.; Chen, Q.; Chen, L. Experimental demonstration of an IFFT/FFT size efficient DFT-spread OFDM for short reach optical transmission systems. J. Light. Technol. 2016, 34, 2100–2105. [Google Scholar] [CrossRef]
- Dong, Y.X.; Jin, W.; Giddings, R.P.; O’Sullivan, M.; Tipper, A.; Durrant, T.; Tang, J.M. Hybrid DFT-spread OFDM-digital filter multiple access PONs for converged 5G networks. J. Opt. Commun. Netw. 2019, 11, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Wake, D.; Nkansah, A.; Gomes, N.J. Radio over fiber link design for next generation wireless systems. J. Light. Technol. 2010, 28, 2456–2464. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zeng, H.; Chand, N.; Effenberger, F. Efficient mobile fronthaul via DSP-based channel aggregation. J. Light. Technol. 2016, 34, 1556–1564. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Liu, X. OFDM based super channel transmission technology. J. Light. Technol. 2012, 30, 3816–3823. [Google Scholar] [CrossRef]
- Jung, S.M.; Mun, K.H.; Jung, S.Y.; Han, S.K. Optical-beat-induced multi-user-interference reduction in single wavelength OFDMA PON upstream multiple access systems with self-homodyne coherent detection. J. Light. Technol. 2016, 34, 2804–2811. [Google Scholar] [CrossRef]
- Jin, W.; Zhong, Z.Q.; He, J.X.; Sankoh, A.; Giddings, R.P.; Hong, Y.H.; Pierce, I.; O’Sullivan, M.; Laperle, C.; Lee, J.; et al. Experimental demonstrations of hybrid OFDM-digital filter multiple access PONs. IEEE Photon. Technol. Lett. 2020, 32, 751–754. [Google Scholar] [CrossRef]
- Tang, J.M.; Shore, K.A. 30-gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation. J. Light. Technol. 2006, 24, 2318–2327. [Google Scholar] [CrossRef]
- Bolea, M.; Giddings, R.P.; Tang, J.M. Digital orthogonal filter- enabled optical OFDM channel multiplexing for software-reconfigurable elastic PONs. J. Light. Technol. 2014, 32, 1200–1206. [Google Scholar] [CrossRef]
- Bolea, M.; Giddings, R.P.; Bouich, M.; Aupetit-Berthelemot, C.; Tang, J.M. Digital filter multiple access PONs with DSP-enabled software reconfigurability. J. Opt. Commun. Netw. 2015, 7, 215–222. [Google Scholar] [CrossRef]
- Im, G.H.; Harman, D.D.; Huang, G.; Mandzik, A.V.; Nguyen, M.H.; Werner, J.J. 51.84 Mb/s 16-CAP ATM LAN standard. IEEE J. Sel. Areas Commun. 1995, 13, 620–632. [Google Scholar] [CrossRef]
- Dong, Y.X.; Al-Rawachy, E.; Giddings, R.P.; Jin, W.; Nesset, D.; Tang, J.M. Multiple channel interference cancellation of digital filter multiple access PONs. J. Light. Technol. 2017, 35, 34–44. [Google Scholar] [CrossRef]
- Al-Rawachy, E.; Giddings, R.P.; Tang, J.M. Experimental demonstration of cross-channel interference cancellation for digital filter multiple access PONs. In Proceedings of the Optical Fiber Communication Conference 2016, Anaheim, CA, USA, 20–22 March 2016; Volume 25, p. Th3C.5. [Google Scholar]
- Agrawal, G.P. Fibre-Optic Communication Systems, 3rd ed.; Wiley, John & Sons: Rochester, NY, USA, 2002; pp. 133–176. [Google Scholar]
- Zeng, Y.; Dong, Z.; Chen, Y.; Wu, X.; He, H.; You, J.; Xiao, Q. A Novel CAP-WDM-PON employing multi-band DFT-spread DMT signals based on optical Hilbert-transformed SSB modulation. IEEE Access 2019, 7, 29397–29404. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
IFFT/FFT Size | 32/64 | Clipping Ratio—Including /Excluding DFT-spread | 11 dB/12 dB |
Number of Used Data Subcarriers per ONU | 14 | Digital Filter Length/Excess Bandwidth | 64/0 |
Modulation Format | 64-QAM | PIN Detector Quantum Efficiency | 0.8 A/W |
Cyclic Prefix | 25% | PIN Detector Sensitivity | −19 dBm |
Channel Bitrate | 13.12 Gb/s | PIN Detector Bandwidth | Ideal |
Optical Launch Power | 0 dBm | Fibre-Dispersion | 17 ps/nm/km |
DAC/ADC Sample Rate | 12.5 GS/s | Fibre-Dispersion Slope | 0.08 ps/nm2/km |
Number of Bits | 7-bits | Fibre Loss | 0.2 dB/km |
Up-sampling Factor | M = 2 | Fibre Kerr Coefficient | 2.6 × 10−20 m2/W |
FEC Limit 1 | 1 × 10−3 | Transmission Distance | 25 km |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankoh, A.; Jin, W.; Zhong, Z.; He, J.; Hong, Y.; Giddings, R.; Tang, J. DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs. Sensors 2021, 21, 5903. https://doi.org/10.3390/s21175903
Sankoh A, Jin W, Zhong Z, He J, Hong Y, Giddings R, Tang J. DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs. Sensors. 2021; 21(17):5903. https://doi.org/10.3390/s21175903
Chicago/Turabian StyleSankoh, Abdulai, Wei Jin, Zhuqiang Zhong, Jiaxiang He, Yanhua Hong, Roger Giddings, and Jianming Tang. 2021. "DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs" Sensors 21, no. 17: 5903. https://doi.org/10.3390/s21175903
APA StyleSankoh, A., Jin, W., Zhong, Z., He, J., Hong, Y., Giddings, R., & Tang, J. (2021). DFT-Spread Spectrally Overlapped Hybrid OFDM–Digital Filter Multiple Access IMDD PONs. Sensors, 21(17), 5903. https://doi.org/10.3390/s21175903