All-Electronic Emitter-Detector Pairs for 250 GHz in Silicon
Abstract
:1. Introduction
2. FET-Based Resonant Detector
2.1. Characterization Methods
2.2. Detector Characterization Results
3. Colpitts Circuit-Based THz Source
3.1. Modeling and Simulations
3.2. Experimental Characterization Setup
3.3. Emission Maps
3.4. The Emitted Power
4. Performance of Emitter-Detector Systems
4.1. Signal-to-Noise Ratio
4.2. Application to Imaging System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
BiCMOS | Bipolar CMOS |
CMOS | Complementary metal–oxide–semiconductor |
ENBW | Equivalent noise bandwidth |
FET | Field–effect transistor |
FWHM | Full width at half maximum |
HBT | Heterojunction bipolar transistor |
LNA | Low-noise amplifier |
MOSFET | Metal–oxide–semiconductor field-effect transistor |
NEP | Noise equivalent power |
NMOS | N–type metal–oxide–semiconductor |
OAP | Off-axis parabolic mirror |
PCB | Printed circuit board |
PTFE | Polytetrafluoroethylene |
RLF | Reflected focal length |
SNR | Signal–to–noise ratio |
TDS | Time-domain spectroscopy |
TeraFET | Field–effect transistor–based THz detector |
THz | Terahertz |
VCO | Voltage–controlled oscillator |
PTFE | Polytetrafluoroethylene |
References
- Jepsen, P.; Cooke, D.; Koch, M. Terahertz spectroscopy and imaging—Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Crowe, T.W.; Porterfield, D.W.; Hesler, J.L. Multiplier-Based Sources of Terahertz Power. In Proceedings of the 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, 15–19 September 2008; IEEE: Pasadena, CA, USA, 2008; p. 1. [Google Scholar] [CrossRef]
- Deninger, A.J.; Roggenbuck, A.; Schindler, S.; Preu, S. 2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers. J. Infrared Millim. Terahertz Waves 2015, 36, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Pačebutas, V.; Bičiūnas, A.; Balakauskas, S.; Krotkus, A.; Andriukaitis, G.; Lorenc, D.; Pugžlys, A.; Baltuška, A. Terahertz Time-Domain-Spectroscopy System Based on Femtosecond Yb:Fiber Laser and GaBiAs Photoconducting Components. Appl. Phys. Lett. 2010, 97, 031111. [Google Scholar] [CrossRef]
- Kaufmann, P.; Marcon, R.; Kudaka, A.; Cassiano, M.M.; Fernandes, L.; Marun, A.; Pereyra, P.; Godoy, R.; Bortolucci, E.; Zakia, M.B.; et al. Uncooled Detectors of Continuum Terahertz Radiation. J. Microw. Optoelectron. Electromagn. Appl. 2011, 10, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Thomas Keating Ltd. Absolute THz Power-Energy Meters. Available online: http://www.terahertz.co.uk/tk-instruments/products/absolute-thz-power-energy-meters (accessed on 24 July 2018).
- Richards, P.L. Bolometers for Infrared and Millimeter Waves. J. Appl. Phys. 1994, 76, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Afshari, E. A CMOS High-Power Broadband 260-GHz Radiator Array for Spectroscopy. IEEE J. Solid-State Circuits 2013, 48, 3090–3104. [Google Scholar] [CrossRef]
- Dyakonov, M.; Shur, M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron. Dev. 1996, 43, 380–387. [Google Scholar] [CrossRef]
- Lisauskas, A.; Pfeiffer, U.; Öjefors, E.; Haring Bolìvar, P.; Glaab, D.; Roskos, H.G. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 2009, 105, 114511. [Google Scholar] [CrossRef]
- Ikamas, K.; Cibiraite, D.; Lisauskas, A.; Bauer, M.; Krozer, V.; Roskos, H.G. Broadband Terahertz Power Detectors Based on 90-Nm Silicon CMOS Transistors with Flat Responsivity up to 2.2 THz. IEEE Electron Device Lett. 2018, 39, 1413–1416. [Google Scholar] [CrossRef]
- Bauer, M.; Rämer, A.; Chevtchenko, S.A.; Osipov, K.Y.; Čibiraitė, D.; Pralgauskaitė, S.; Ikamas, K.; Lisauskas, A.; Heinrich, W.; Krozer, V.; et al. A high-sensitivity AlGaN/GaN HEMT Terahertz Detector with Integrated Broadband Bow-tie Antenna. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 430–444. [Google Scholar] [CrossRef]
- Zdanevicius, J.; Cibiraite, D.; Ikamas, K.; Bauer, M.; Matukas, J.; Lisauskas, A.; Richter, H.; Hagelschuer, T.; Krozer, V.; Hubers, H.W.; et al. Field-Effect Transistor Based Detectors for Power Monitoring of THz Quantum Cascade Lasers. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 613–621. [Google Scholar] [CrossRef]
- Rodriguez-Vazquez, P.; Grzyb, J.; Sarmah, N.; Heinemann, B.; Pfeiffer, U.R. A 65 Gbps QPSK One Meter Wireless Link Operating at a 225–255 GHz Tunable Carrier in a SiGe HBT Technology. In Proceedings of the 2018 IEEE Radio and Wireless Symposium (RWS), Anaheim, CA, USA, 15–18 January 2018; IEEE: Anaheim, CA, USA, 2018; pp. 146–149. [Google Scholar] [CrossRef]
- Ahmad, Z.; Lee, M.; Kenneth, K.O. 1.4 THz, -13 dBm-EIRP Frequency Multiplier Chain Using Symmetric- and Asymmetric-CV Varactors in 65nm CMOS. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; IEEE: San Francisco, CA, USA, 2016; pp. 350–351. [Google Scholar] [CrossRef]
- Lisauskas, A.; Bauer, M.; Boppel, S.; Mundt, M.; Khamaisi, B.; Socher, E.; Venckevičius, R.; Minkevičius, L.; Kašalynas, I.; Seliuta, D.; et al. Exploration of Terahertz Imaging with Silicon MOSFETs. J. Infrared Millim. Terahertz Waves 2014, 35, 63–80. [Google Scholar] [CrossRef]
- Statnikov, K.; Grzyb, J.; Heinemann, B.; Pfeiffer, U.R. 160-GHz to 1-THz Multi-Color Active Imaging With a Lens-Coupled SiGe HBT Chip-Set. IEEE Trans. Microw. Theory Tech. 2015, 63, 520–532. [Google Scholar] [CrossRef]
- Hillger, P.; Schluter, A.; Jain, R.; Malz, S.; Grzyb, J.; Pfeiffer, U. Low-Cost 0.5 THz Computed Tomography Based on Silicon Components. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017; IEEE: Cancun, Mexico, 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Jain, R.; Rucker, H.; Pfeiffer, U.R. Zero Gate-Bias Terahertz Detection with an Asymmetric NMOS Transistor. In Proceedings of the 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016; IEEE: Copenhagen, Denmark, 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Jain, R.; Hillger, P.; Ashna, E.; Grzyb, J.; Pfeiffer, U.R. A 64-Pixel 0.42-THz Source SoC With Spatial Modulation Diversity for Computational Imaging. IEEE J. Solid-State Circuits 2020, 55, 3281–3293. [Google Scholar] [CrossRef]
- Sengupta, K.; Nagatsuma, T.; Mittleman, D.M. Terahertz Integrated Electronic and Hybrid Electronic–Photonic Systems. Nat. Electron. 2018, 1, 622–635. [Google Scholar] [CrossRef]
- Taghinejad, M.; Cai, W. All-Optical Control of Light in Micro- and Nanophotonics. ACS Photonics 2019, 6, 1082–1093. [Google Scholar] [CrossRef]
- Samizadeh Nikoo, M.; Jafari, A.; Perera, N.; Zhu, M.; Santoruvo, G.; Matioli, E. Nanoplasma-Enabled Picosecond Switches for Ultrafast Electronics. Nature 2020, 579, 534–539. [Google Scholar] [CrossRef]
- Vainshtein, S.N.; Duan, G.; Mikhnev, V.A.; Zemlyakov, V.E.; Egorkin, V.I.; Kalyuzhnyy, N.A.; Maleev, N.A.; Näpänkangas, J.; Sequeiros, R.B.; Kostamovaara, J.T. Interferometrically Enhanced Sub-Terahertz Picosecond Imaging Utilizing a Miniature Collapsing-Field-Domain Source. Appl. Phys. Lett. 2018, 112, 191104. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Hu, Z.; Wang, C.; Holloway, J.; Yi, X.; Kim, M.; Mawdsley, J. Filling the Gap: Silicon Terahertz Integrated Circuits Offer Our Best Bet. IEEE Microw. Mag. 2019, 20, 80–93. [Google Scholar] [CrossRef]
- Wiecha, M.M.; Kapoor, R.; Chernyadiev, A.V.; Ikamas, K.; Lisauskas, A.; Roskos, H.G. Antenna-Coupled Field-Effect Transistors as Detectors for Terahertz near-Field Microscopy. Nanoscale Adv. 2021, 3, 1717–1724. [Google Scholar] [CrossRef]
- Čibiraitė-Lukenskienė, D.; Lisauskas, A.; Ikamas, K.; Martín-Mateos, P.; Fernandez, C.D.D.; Gallardo, P.A.; Krozer, V. Field-Effect Transistor-Based Detector for Hyperspectral THz Imaging. In Proceedings of the 2020 23rd International Microwave and Radar Conference (MIKON), Warsaw, Poland, 5–8 October 2020; pp. 300–304. [Google Scholar] [CrossRef]
- Javadi, E.; However, D.B.; Ikamas, K.; Zdanevičius, J.; Knap, W.; Lisauskas, A. Sensitivity of Field-Effect-Transistor-Based Terahertz Detectors. Sensors 2021, 21, 2909. [Google Scholar] [CrossRef]
- Volakis, J.L. (Ed.) Antenna Engineering Handbook, 4th ed.; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Hillger, P.; Grzyb, J.; Jain, R.; Pfeiffer, U.R. Terahertz Imaging and Sensing Applications With Silicon-Based Technologies. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 1–19. [Google Scholar] [CrossRef]
- Andree, M.; Grzyb, J.; Jain, R.; Heinemann, B.; Pfeiffer, U.R. A Broadband Antenna-Coupled Terahertz Direct Detector in a 0.13-μm SiGe HBT Technology. In Proceedings of the 2019 14th European Microwave Integrated Circuits Conference (EuMIC), Paris, France, 30 September–1 October 2019; IEEE: Paris, France, 2019; pp. 168–171. [Google Scholar] [CrossRef]
- De Vroede, A.; Reynaert, P. 23.3 A 605GHz 0.84mW Harmonic Injection-Locked Receiver Achieving 2.3pW/ NEP in 28 nm CMOS. In Proceedings of the 2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; IEEE: San Francisco, CA, USA, 2021; pp. 328–330. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Z.Z.; Du, Y.; Li, Y.; Al Hadi, R.; Virbila, G.; Xu, Y.; Kim, Y.; Tang, A.; Reck, T.J.; et al. A 0.56 THz Phase-Locked Frequency Synthesizer in 65 nm CMOS Technology. IEEE J. Solid-State Circuits 2016, 51, 3005–3019. [Google Scholar] [CrossRef]
- Khamaisi, B.; Jameson, S.; Socher, E. A 210–227 GHz Transmitter With Integrated On-Chip Antenna in 90 nm CMOS Technology. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 141–150. [Google Scholar] [CrossRef]
- Rudd, J.V.; Mittleman, D.M. Influence of Substrate-Lens Design in Terahertz Time-Domain Spectroscopy. JOSA B 2002, 19, 319–329. [Google Scholar] [CrossRef]
- Fernandes, C.A.; Lima, E.B.; Costa, J.R. Dielectric Lens Antennas. Handb. Antenna Technol. 2016, 2, 1001–1064. [Google Scholar] [CrossRef] [Green Version]
- Van den Heuvel, A.P.; Kotzin, M.D.; Marhic, M.E. Reflectors and immersion lenses for detectors of diffuse radiation. JOSA 1982, 72, 352–355. [Google Scholar] [CrossRef]
Method | Maximum | Minimum NEP | |
---|---|---|---|
(mm) | (V/W) | (pW/) | |
I. From the antenna gain | 7.5 | 786 | 8.8 |
IIa. Integration of the beam pattern | 12.6 | 417 | 16.6 |
IIb. Integration of the beam pattern with directivity de-embedded | 0.11 | 47.6 k | 0.15 |
III. Without any normalisation (optical performance) | N/A | 408 | 22.0 |
Circuit Element | At 84 GHz | At 250 GHz | ||||
---|---|---|---|---|---|---|
VCO1 | VCO2 | VCO3 | VCO1 | VCO2 | VCO3 | |
Source LC () | ||||||
Drain inductor () | ||||||
Gate inductor () |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikamas, K.; But, D.B.; Cesiul, A.; Kołaciński, C.; Lisauskas, T.; Knap, W.; Lisauskas, A. All-Electronic Emitter-Detector Pairs for 250 GHz in Silicon. Sensors 2021, 21, 5795. https://doi.org/10.3390/s21175795
Ikamas K, But DB, Cesiul A, Kołaciński C, Lisauskas T, Knap W, Lisauskas A. All-Electronic Emitter-Detector Pairs for 250 GHz in Silicon. Sensors. 2021; 21(17):5795. https://doi.org/10.3390/s21175795
Chicago/Turabian StyleIkamas, Kęstutis, Dmytro B. But, Albert Cesiul, Cezary Kołaciński, Tautvydas Lisauskas, Wojciech Knap, and Alvydas Lisauskas. 2021. "All-Electronic Emitter-Detector Pairs for 250 GHz in Silicon" Sensors 21, no. 17: 5795. https://doi.org/10.3390/s21175795
APA StyleIkamas, K., But, D. B., Cesiul, A., Kołaciński, C., Lisauskas, T., Knap, W., & Lisauskas, A. (2021). All-Electronic Emitter-Detector Pairs for 250 GHz in Silicon. Sensors, 21(17), 5795. https://doi.org/10.3390/s21175795