Next Article in Journal
Delay-Tolerant Distributed Inference in Tracking Networks
Next Article in Special Issue
Geometric Algebra-Based ESPRIT Algorithm for DOA Estimation
Previous Article in Journal
Brain-Computer Interface: Advancement and Challenges
Previous Article in Special Issue
Machine Learning Enhances the Performance of Bioreceptor-Free Biosensors
 
 
Article

Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case

1
Department of Computer Engineering, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain
2
Centro de Investigación CITIC, Universidade da Coruña, 15071 A Coruña, Spain
3
ADiT-Lab, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal
4
IT—Instituto de Telecomunicações, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
*
Author to whom correspondence should be addressed.
Academic Editors: Zihuai Lin and Wei Xiang
Sensors 2021, 21(17), 5745; https://doi.org/10.3390/s21175745
Received: 2 August 2021 / Revised: 20 August 2021 / Accepted: 23 August 2021 / Published: 26 August 2021
(This article belongs to the Special Issue Wireless Sensing and Networking for the Internet of Things)
Internet of Things (IoT) can help to pave the way to the circular economy and to a more sustainable world by enabling the digitalization of many operations and processes, such as water distribution, preventive maintenance, or smart manufacturing. Paradoxically, IoT technologies and paradigms such as edge computing, although they have a huge potential for the digital transition towards sustainability, they are not yet contributing to the sustainable development of the IoT sector itself. In fact, such a sector has a significant carbon footprint due to the use of scarce raw materials and its energy consumption in manufacturing, operating, and recycling processes. To tackle these issues, the Green IoT (G-IoT) paradigm has emerged as a research area to reduce such carbon footprint; however, its sustainable vision collides directly with the advent of Edge Artificial Intelligence (Edge AI), which imposes the consumption of additional energy. This article deals with this problem by exploring the different aspects that impact the design and development of Edge-AI G-IoT systems. Moreover, it presents a practical Industry 5.0 use case that illustrates the different concepts analyzed throughout the article. Specifically, the proposed scenario consists in an Industry 5.0 smart workshop that looks for improving operator safety and operation tracking. Such an application case makes use of a mist computing architecture composed of AI-enabled IoT nodes. After describing the application case, it is evaluated its energy consumption and it is analyzed the impact on the carbon footprint that it may have on different countries. Overall, this article provides guidelines that will help future developers to face the challenges that will arise when creating the next generation of Edge-AI G-IoT systems. View Full-Text
Keywords: Green IoT; IIoT; edge computing; AI; edge AI; sustainability; digital transition; digital circular economy; Industry 5.0 Green IoT; IIoT; edge computing; AI; edge AI; sustainability; digital transition; digital circular economy; Industry 5.0
Show Figures

Figure 1

MDPI and ACS Style

Fraga-Lamas, P.; Lopes, S.I.; Fernández-Caramés, T.M. Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case. Sensors 2021, 21, 5745. https://doi.org/10.3390/s21175745

AMA Style

Fraga-Lamas P, Lopes SI, Fernández-Caramés TM. Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case. Sensors. 2021; 21(17):5745. https://doi.org/10.3390/s21175745

Chicago/Turabian Style

Fraga-Lamas, Paula, Sérgio Ivan Lopes, and Tiago M. Fernández-Caramés. 2021. "Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case" Sensors 21, no. 17: 5745. https://doi.org/10.3390/s21175745

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop