Communication-Efficient Tracking of Unknown, Spatially Correlated Signals in Ad-Hoc Wireless Sensor Networks: Two Machine Learning Approaches
Abstract
:1. Introduction
2. Related Works
2.1. Spatial Modeling Using Contour Lines
2.2. Spatiotemporal Recognition Using ML
2.3. SG Method Applied in ML Algorithms
3. Problem Statement and Background
4. The Proposed Algorithms
5. Performance Evaluation
5.1. Spatial Signal Model and Assumptions
5.2. Performance Evaluation Results
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiang, W.; Pan, Z.; Chun, C.; Jianjun, B. Surface Rendering for Parallel Slices of Contours from Medical Imaging. Comput. Sci. Eng. 2007, 9, 32–37. [Google Scholar] [CrossRef]
- Meijering, E. Cell Segmentation: 50 Years Down the Road [Life Sciences]. IEEE Signal Process. Mag. 2012, 29, 140–145. [Google Scholar] [CrossRef]
- Mashima, D.; Kobourov, S.; Hu, Y. Visualizing Dynamic Data with Maps. IEEE Trans. Vis. Comput. Graph. 2012, 18, 1424–1437. [Google Scholar] [CrossRef]
- Zhou, B.; Xie, Z.; Zhang, Y.; Lohokare, J.; Gao, R.; Ye, F. Robust Human Face Authentication Leveraging Acoustic Sensing on Smartphones. IEEE Trans. Mob. Comput. 2021, 1. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Su, W.; Sankarasubramanuam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Wang, J.; Song, H.; Fu, D.; Wong, K. Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1011–1015. [Google Scholar] [CrossRef]
- Vuran, M.C.; Akan, O.B.; Akyildiz, I.F. Spatio-temporal correlation: Theory and applications for wireless sensor networks. Comput. Netw. 2004, 45, 245–259. [Google Scholar] [CrossRef]
- Kramer, A.; Paul, T.A. High-precision density sensor for concentration monitoring of binary gas mixtures. In Proceedings of the Eurosensors XXVI, Krakow, Poland, 9–12 September 2012; pp. 44–47. [Google Scholar]
- Liu, J.H.; Chen, Y.F. An air quality monitoring system for urban areas based on the technology of wireless sensor networks. Int. J. Smart Sens. Intell. Syst. 2012, 5, 191–214. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Huang, B. Integrating modis and MTSAT-2 to generate high spatial-temporal-spectral resolution imagery for real-time air quality monitoring. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Dutta, J.; Gazi, F.; Roy, S.; Chowdhury, C. AirSense: Opportunistic crowd-sensing based air quality monitoring system for smart city. In Proceedings of the IEEE Sensors’16, Orlando, FL, USA, 30 October–3 November 2016. [Google Scholar]
- Shaban, K.B.; Kadri, A.; Rezk, E. Urban air pollution monitoring system with forecasting models. IEEE Sens. J. 2016, 16, 2598–2606. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Gotsis, A.; Wan, S.; Sarigiannidis, P.; Nikolaidis, S.; Goudos, S.K. Smart Irrigation System for Precision Agriculture—The AREThOU5A IoT Platform. IEEE Sens. J. 2020, 1. [Google Scholar] [CrossRef]
- Tyagi, S.K.S.; Mukherjee, A.; Pokhrel, S.R.; Hiran, K.K. An Intelligent and Optimal Resource Allocation Approach in Sensor Networks for Smart Agri-IoT. IEEE Sens. J. 2020, 1. [Google Scholar] [CrossRef]
- Wan, L.; Han, G.; Shu, L.; Feng, N.; Zhu, C.; Lloret, J. Distributed Parameter Estimation for Mobile Wireless Sensor Network Based on Cloud Computing in Battlefield Surveillance System. IEEE Access 2015, 3, 1729–1739. [Google Scholar] [CrossRef]
- Jia, J.S.; Lu, X.; Yuan, Y. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef]
- Hohl, A.; Delmelle, E.M.; Desjardins, M.R.; Lan, Y. Daily surveillance of COVID-19 using the prospective space-time scan statistic in the United States. Elsevier J. Spat. Spatio-Temporal Epidemiol. 2020, 34, 100354. [Google Scholar] [CrossRef]
- Cordes, J.; Castro, M.C. Spatial analysis of COVID-19 clusters and contextual factors in New York City. J. Spat. Spatio-Temporal Epidemiol. 2020, 34, 100355. [Google Scholar] [CrossRef]
- Lian, J.; Chen, L.; Naik, K.; Liu, Y.; Agnew, G.B. Gradient boundary detection for time series snapshot construction in sensor networks. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 1462–1475. [Google Scholar] [CrossRef] [Green Version]
- Chintalapudi, K.K.; Govindan, R. Localized edge detection in sensor fields. In Proceedings of the IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage, AK, USA, 11 May 2003. [Google Scholar]
- Liao, P.K.; Chang, M.K.; Kuo, C.C.J. Contour line extraction in a multi-modal field with sensor networks. In Proceedings of the IEEE Global Telecommunication Conferece (Globecom), St. Louis, MO, USA, 28 November–2 December 2005. [Google Scholar]
- Liao, P.K.; Chang, M.K.; Kuo, C.C.J. A distributed approach to contour line extraction using sensor networks. In Proceedings of the IEEE Vehicular Technology Conference, Dallas, TX, USA, 25–28 September 2005. [Google Scholar]
- Liao, P.K.; Chang, M.K.; Kuo, C.C.J. Contour line extraction with wireless sensor networks. In Proceedings of the IEEE International Conference on Communications (ICC), Seoul, Korea, 16–20 May 2005. [Google Scholar]
- Liao, P.K.; Chang, M.K.; Kuo, C.C.J. A cross-layer approach to contour nodes inference with data fusion in wireless sensor networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Hong Kong, China, 11–15 March 2007. [Google Scholar]
- Alasti, H.; Armstrong, W.A.; Nasipuri, A. Performance of a robust filter-based approach for contour detection in wireless sensor networks. In Proceedings of the ICCCN’07, Honolulu, HI, USA, 13–16 August 2007. [Google Scholar]
- Alasti, H.; Nasipuri, A. Spatiotemporal monitoring using contours in Large-scale wireless sensor networks. In Proceedings of the ACM FOWANC, New Orleans, LA, USA, 18 May 2009. [Google Scholar]
- Solis, I.; Obraczka, K. Isolines: Energy-efficient mapping in sensor networks. In Proceedings of the IEEE Symposium Computers and Communications, ISCC’05, Murcia, Spain, 27–30 June 2005. [Google Scholar]
- Buragohain, C.; Gandhi, S.; Hershberger, J.; Suri, S. Contour approximation in sensor networks. In Proceedings of the International Conference on Distributed Computing in Sensor Systems (DCOSS ’06), San Francisco, CA, USA, 18–20 June 2006. [Google Scholar]
- Gandhi, S.; Hershberger, J.; Suri, S. Approximate iso-contours and spatial summaries in sensor networks. In Proceedings of the Information Processing in Sensor Networks (IPSN’07), Cambridge, MA, USA, 25–27 April 2007. [Google Scholar]
- Sarkar, R.; Zhu, X.; Gao, J.; Guibas, L.J.; Mitchell, J.S.B. Iso-contour queries and gradient descent with guaranteed delivery in sensor networks. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), Phoenix, AZ, USA, 13–18 April 2008. [Google Scholar]
- Alasti, H. Energy efficient spatiotemporal threshold level detection in large scale wireless sensor fields. In Proceedings of the IEEE Online Conference on Green Communications (GreenCom), Online, 25–28 September 2012. [Google Scholar]
- Alasti, H. An on-demand compressed sensing approach for spatial monitoring of correlated big data using multi-contours in dense wireless sensor network. In Proceedings of the IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Montreal, QC, Canada, 10–12 October 2017. [Google Scholar]
- Alasti, H. Non-uniform-level crossing sampling for efficient sensing of temporally sparse signals. IET Wirel. Sens. Syst. 2014, 4, 27–34. [Google Scholar] [CrossRef]
- Alasti, H. Level crossing sampling for energy conservation in wireless sensor networks: A design framework. In Pervasive Computing and Communications Design and Deployment: Technologies, Trends and Applications; IGI Global: Hershey, PA, USA, 2011. [Google Scholar]
- Alasti, H. Efficient Sensing of Correlated Spatiotemporal Signals: A Stochastic Gradient Approach. IEEE Signal Process. Lett. 2019, 26, 1728–1732. [Google Scholar] [CrossRef]
- Alasti, H. Efficient Tracking of Spatially Correlated Signals in Wireless Sensor Fields: A Weighted Stochastic Gradient Approach. IET Wirel. Sens. Syst. 2021, 11, 78–90. [Google Scholar] [CrossRef]
- Sarkka, S.; Solin, A.; Hartikainen, J. Spatiotemporal learning via infinite-dimensional Bayesian filtering and smoothing: A look at Gaussian process regression through Kalman filtering. IEEE Signal Process. Mag. 2013, 30, 51–61. [Google Scholar] [CrossRef]
- Ghatwary, N.; Zolgharni, M.; Janan, F.; Ye, X. Learning spatiotemporal features for esophageal abnormality detection from endoscopic videos. IEEE J. Biomed. Health Inform. 2020, 25, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Nagarajan, S.; Chen, Z. Bayesian machine learning: EEGMEG signal processing measurements. IEEE Signal Process. Mag. 2016, 33, 14–36. [Google Scholar] [CrossRef]
- Verrelst, J.; Berger, K.; Rivera-Caicedo, J.P. Intelligent sampling for vegetation nitrogen mapping based on hybrid machine learning algorithms. IEEE Geosci. Remote Sens. Lett. 2020, 1–5. [Google Scholar] [CrossRef]
- Tkachev, G.; Frey, S.; Ertl, T. Local prediction models for spatiotemporal volume visualization. IEEE Trans. Vis. Comput. Graph. 2020, 27, 3091–3108. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Fallahzadeh, R.; Ghasemzadeh, H. Glaucoma-specific gait pattern assessment using body-worn sensors. IEEE Sens. J. 2016, 16, 6406–6415. [Google Scholar] [CrossRef]
- Aghanavesi, S.; Bergquist, F.; Nyholm, D.; Senek, M.; Memedi, M. Motion sensor-based assessment of Parkinson’s disease motor symptoms during leg agility tests: Results from Levodopa challenge. IEEE J. Biomed. Health Inform. 2020, 24, 111–119. [Google Scholar] [CrossRef]
- Xu, K.; Li, H.; Liu, Z. ISOMAP-based spatiotemporal modeling for Lithium-Ion battery thermal process. IEEE Trans. Ind. Inform. 2018, 14, 569–577. [Google Scholar] [CrossRef]
- Xu, K.; Li, H.; Yang, H. Kernel-based random vector functional-link network for fast learning of spatiotemporal dynamic processes. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1016–1026. [Google Scholar] [CrossRef]
- Crowley, M. Using Equilibrium Policy Gradients for Spatiotemporal Planning in Forest Ecosystem Management. IEEE Trans. Comput. 2014, 63, 142–154. [Google Scholar] [CrossRef]
- Ozdenizci, O.; Quivira, F.; Erdogmus, D. Information theoretic feature projection for single-trial brain-computer interfaces. In Proceedings of the 27th IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Tokyo, Japan, 25–28 September 2017. [Google Scholar]
- Alasti, H. An Efficient Machine Learning Algorithm for Spatial Tracking of Correlated Signals in Wireless Sensor Field. In Proceedings of the 30th International Telecommunication Networks and Applications Conference (ITNAC), Melbourne, Australia, 25–27 November 2020. [Google Scholar]
- Alasti, H. An Efficient Accelerated Learning Algorithm for Tracking of Unknown, Spatially Correlated Signals in Ad-Hoc Wireless Sensor Networks. In Proceedings of the 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 28–31 October 2020; pp. 813–819. [Google Scholar]
- Sandwell, D.T. Bipolar spline interpolation of GEOS-3 and SEASAT altimeter data. Geophys. Res. Lett. 1987, 14, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Bershad, N. Analysis of the normalized LMS algorithm with Gaussian inputs. IEEE Trans. Acoust. Speech Signal Process. 1986, 34, 793–806. [Google Scholar] [CrossRef]
- Alasti, H. On Norm Selection Effect in Energy Efficient Modeling of Correlated Spatial Signals Using Machine Learning in Wireless Sensor Field. In Proceedings of the IEEE International Conference on Green Energy, Computing and Sustainable Technology 2021 (GECOST’21), Sarawak, Malaysia, 7–9 July 2021. [Google Scholar]
- Sayood, K. Introduction to Data Compression; Morgan Kaufmann: San Francisco, CA, USA, 2000. [Google Scholar]
- Jindal, A.; Psounis, K. Modeling spatially correlated data in sensor network. ACM Trans. Sens. Netw. 2006, 2, 466–499. [Google Scholar] [CrossRef]
- Efficient Spatiotemporal Monitoring of Correlated Signals Based on Stochastic Gradient. Available online: https://github.com/HarryAlasti/Efficient-spatiotemporal-monitoring-of-correlated-signals-using-machine-learning (accessed on 24 July 2021).
Parameter | Description | Selection |
---|---|---|
M | The number of contour levels | Adaptive |
Contour level set | Adaptive | |
Contour line’s margin | Adaptive by ML | |
Reported lower signal strength | Most recent search | |
Reported upper signal strength | Most recent search | |
Number of the wireless sensors in the field | 10,000 or 12,000 | |
Initial number of iso-contour lines | Initial guess (3 10) | |
Noise’s standard deviation after averaging | ——- | |
Increment in the number of contour lines | is selected 3 | |
The stochastic gradient weight factor | Adaptive | |
The horizontal and vertical shifts of the signal elements | 0.1 per time step | |
Window size of the moving average filter | Adaptive or fixed (10) |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alasti, H. Communication-Efficient Tracking of Unknown, Spatially Correlated Signals in Ad-Hoc Wireless Sensor Networks: Two Machine Learning Approaches. Sensors 2021, 21, 5175. https://doi.org/10.3390/s21155175
Alasti H. Communication-Efficient Tracking of Unknown, Spatially Correlated Signals in Ad-Hoc Wireless Sensor Networks: Two Machine Learning Approaches. Sensors. 2021; 21(15):5175. https://doi.org/10.3390/s21155175
Chicago/Turabian StyleAlasti, Hadi. 2021. "Communication-Efficient Tracking of Unknown, Spatially Correlated Signals in Ad-Hoc Wireless Sensor Networks: Two Machine Learning Approaches" Sensors 21, no. 15: 5175. https://doi.org/10.3390/s21155175
APA StyleAlasti, H. (2021). Communication-Efficient Tracking of Unknown, Spatially Correlated Signals in Ad-Hoc Wireless Sensor Networks: Two Machine Learning Approaches. Sensors, 21(15), 5175. https://doi.org/10.3390/s21155175