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Abstract: A low-cost machine learning (ML) algorithm is proposed and discussed for spatial tracking
of unknown, correlated signals in localized, ad-hoc wireless sensor networks. Each sensor is modeled
as one neuron and a selected subset of these neurons are called to identify the spatial signal. The
algorithm is implemented in two phases of spatial modeling and spatial tracking. The spatial
signal is modeled using its M iso-contour lines at levels {`j}M

j=1 and those sensors that their sensor
observations are in ∆ margin of any of these levels report their sensor observations to the fusion
center (FC) for spatial signal reconstruction. In spatial modeling phase, the number of these contour
lines, their levels and a proper ∆ are identified. In this phase, the algorithm may either use adaptive-
weight stochastic gradient or scaled stochastic gradient method to select a proper ∆. Additive
white Gaussian noise (AWGN) with zero mean is assumed along with the sensor observations. To
reduce the observation noise’s effect, each sensor applies moving average filter on its observation to
drastically reduce the effect of noise. The modeling performance, the cost and the convergence of the
algorithm are discussed based on extensive computer simulations and reasoning. The algorithm is
proposed for climate and environmental monitoring. In this paper, the percentage of wireless sensors
that initiate a communication attempt is assumed as cost. The performance evaluation results show
that the proposed spatial tracking approach is low-cost and can model the spatial signal over time
with the same performance as that of spatial modeling.

Keywords: machine learning; spatial signal modeling; spatial tracking; signal processing; ad-hoc
sensor network

1. Introduction

This paper presents a machine learning (ML) algorithm for recognition and low-cost
tracking of unknown spatially correlated signals using sensor readings in ad-hoc wireless
sensor fields. The randomly distributed wireless sensors are modeled as neurons and
subsets of these neurons are selected to identify the unknown signal. In this identification
problem, the signal is modeled using its M iso-contour lines at levels {`j}M

j=1. Modeling
the spatial signal using their contour levels has been used in several applications, such as
medical imaging [1,2]; geographic information systems [3]; computer vision [4]; etc. In
wireless sensor network, modeling the spatial signals using their contour lines compresses
the signal to a limited number of sensor readings, where as result it conserves massive
amount of in-network energy and can increase the network’s lifetime. Energy conservation
is a challenging problem in wireless sensor networks [5].

The proposed algorithm has applications in environmental monitoring, such as moni-
toring the temperature of heat-island [6], gas density monitoring [7,8], monitoring the city
air pollution [9–12], smart agriculture [13,14], smart battlefield [15]; where the objective
is to monitor the distribution of a correlated physical quantity such as density of gasses,
pollutants, radiations, moisture, temperature, etc. In modern days the smart Internet of
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things (IoT) devices can act as nodes of sensor network for monitoring of the desired
quantities in the extent of a vast area, such as extent of a city, a forest, or even a deserted
area. Study of the spatiotemporal distribution of the number of infections to a contagious
disease such as COVID-19 [16–18] within a large area of a country is another application
example of the discussed algorithm in this paper.

In this paper, a cost-efficient algorithm is proposed and discussed for spatial moni-
toring of unknown, correlated signals over time from wireless sensor observations. Local-
ization of the sensor nodes and the correlation in spatial signal are the only assumptions
from the sensor field. Two machine learning (ML) algorithms based on stochastic gradient
are used to derive the spatial model parameters. The spatial signal is modeled using its M
contour lines at levels {`j}M

j=1 and those wireless sensors that their sensor observations are
within ∆ margin of any of these contour levels report their sensor observations to the fusion
center(s) (FC) for spatial signal reconstruction. The proposed algorithm is implemented
in spatial modeling, and spatial tracking phases. In spatial modeling phase, the model
parameters, ∆ and {`j}M

j=1 are identified after iteration steps of the ML algorithm. Figure 1,
represents the approach in a glance. Spatial tracking phase, however uses the most recent
model parameters and updates them. Each sensor is modeled as one neuron, where a
subset of the neurons in neural network report their observations to the FC for feature
extraction of the spatial signal that finally results in spatial signal recognition. During the
iteration steps of the algorithm the FC queries the neural network using the new model
parameters, until convergence. Figure 2, illustrates the single layer neural network model
of the proposed algorithm.

The proposed algorithm uses two novel forms of stochastic gradient (SG) method for
updating the contour level margin (∆), in each iteration step of the spatial modeling phase.
The novelty of the approach is in using SG to tangibly reduce the cost of the spatial signal
monitoring. The performance evaluation of the algorithm based on extensive simulations
show that the proposed algorithm has acceptable modeling error, is reasonably low-cost,
and properly converges, in the presence of filtered observation noise. The model and the
performance evaluation parameters are listed in Table 1.

Fusion Center (FC)
ML Algorithm

Subset of Sensor 

Observations

Δ and Contour Levels 

Introduced

Figure 1. A subset of sensor observations are reported in response to the FC’s query to reconstruct the
signal. The FC uses these sensor observations for feature extraction and reconstruction of the spatial
signal. This figure illustrates a given subset of wireless sensors with green color and their related
sensor observations in margin of a given contour level, with red colors on spatial signal distribution.
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Figure 2. A subset of the sensors that are modeled as neurons report to the FC for feature extrac-
tion purpose.

Table 1. Parameters of the proposed algorithm.

Parameter Description Selection

M The number of contour levels Adaptive
{`j}M

j=1 Contour level set Adaptive
∆ Contour line’s margin Adaptive by ML

Lmin Reported lower signal strength Most recent search
Lmax Reported upper signal strength Most recent search
N0 Number of the wireless sensors in the field 10,000 or 12,000
M0 Initial number of iso-contour lines Initial guess (3 ≤ M0 ≤ 10)

σNoise Noise’s standard deviation after averaging ——-
κ Increment in the number of contour lines κ is selected 3
µk The stochastic gradient weight factor Adaptive

xstep
ystep

The horizontal and vertical shifts of the
signal elements 0.1 per time step

WMA Window size of the moving average filter Adaptive or fixed (10)

The rest of this paper is organized as follows. In the next section the related works
will be reviewed. Then, in Section 3, the background of this research will be explained. The
proposed ML algorithm will be presented in Section 4. Then the modeling performance, the
cost and the convergence of the algorithm will be discussed, based on extensive computer
simulations, which is a common approach in evaluation of ML and SG problems.

2. Related Works

In this section a number of the related works to this research are reviewed. These
researches are categorized in three groups of (i) modeling the spatial signal in sensor field
using the iso-contour lines of the signal and contour detection problem, (ii) using ML for
spatial signal recognition, and (iii) using SG methods in ML for signal identification.

2.1. Spatial Modeling Using Contour Lines

To monitor and track the spatial distribution of temperature, Lian, et al., modeled the
spatial signal using its equally spaced contour lines and tracked the changes based on time
series analysis [19]. Detection and delineation of the borders of an area, such as the area
surrounded by a given contour line, was discussed based on a binary detection measures
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by Chintalapudi, et al., [20]. Contour detection by clustering in wireless sensor network
(WSN) in the presence of observation noise, quantization noise and imperfect radio channel
was discussed in [21–24]. The effect of observation noise and quantization noise for contour
detection in WSN using a distributed filter-based approach was discussed in [25]. Based
on this filter-based approach, monitoring of a two-dimensional Gaussian signal over time
was discussed in [26]. A low-cost protocol was introduced in [27] for detection of iso-
contour lines of spatial distribution in WSN. To approximate the iso-contour lines of a
given spatial signal, k-nearest neighbors was used in [28,29]. A data-driven distributed
algorithm was introduced in [30] to search for the wireless sensors that represent the
iso-contours of a spatial signal. A distributed algorithm was introduced in [31] for energy
efficient tracking of the iso-contours of a random spatial signal. To find the number of
required contour lines and the spacing between the contour levels, an iterative on-demand
algorithm was discussed in [32] for spatial signal monitoring in WSN in the presence of
observation noise. Spatial signal modeling using its contour lines is comparable with
efficient sampling of one-dimensional signals based on level-crossing sampling [33,34]. A
novel SG algorithm for low-cost spatial signal monitoring using iso-contours was discussed
in [35]. To improve the performance and to resolve the shortcomings of this algorithm, a
weighted stochastic gradient (WSG) algorithm was proposed in [36] by adding a weight
factor to the gradient term.

2.2. Spatiotemporal Recognition Using ML

Once the objective is to represent the whole dynamics of a spatiotemporal signal
using finite number of measurements, Gaussian process-based machine learning provides
a powerful tool for nonparametric regression and classification [37]. Certain classes of tem-
poral or spatiotemporal Gaussian process regression problems can be converted into finite
or infinite dimensional state-space models, where it results in computationally efficient
algorithms [37].

Detection of spatiotemporal features of esophageal abnormality from endoscopic
videos by incorporating 3D convolutional neural network and convolutional long short-
term memories (LSTM) reported in [38] for the first time. Bayesian machine learning (BML)
was discussed as a method to extract the electroencephalography (EEG) and magneto-
encephalography (MEG) informative brain spatiotemporal–spectral patterns [39].

A hybrid machine learning algorithm was proposed and discussed in [40] in order
to minimize and optimize the access time to database for reducing the analysis time and
increasing the accuracy of nitrogen vegetation spatiotemporal mapping.

To detect and to visualize the complex behavior in spatiotemporal volumes, a machine
learning algorithm has been proposed in [41]. The algorithm detects the spatiotemporal
regions of various complexities by training several models.

The spatiotemporal and the steady-state gait pattern of glaucoma patients were stud-
ied using body-worn sensors by development of signal processing and machine learning
algorithms in [42].

In study of the results from Levodipa challenge on Parkinson’s disease motor symp-
toms, using the sensor data, spatiotemporal features were calculated. Multiple machine
learning methods such as square support vector machine (SVM), decision trees and linear
regression were trained to predict the state of the patients [43].

A data-based spatiotemporal modeling method was investigated in [44] for online
estimation of temperature distribution in Lithium-Ion batteries in electric vehicles using
machine learning algorithm.

An effective spatiotemporal model to predict the temperature distribution in industrial
thermal processes was proposed and discussed in [45]. The proposed method showed
better performance than that of neural networks and least square SVM.
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2.3. SG Method Applied in ML Algorithms

For environmental and resource planning, a spatiotemporal planning was proposed
based on factored Markov decision process and presents a policy gradient planning to
optimize a stochastic spatial policy in [46]. Markov chain Monte Carlo simulation is used
to sample landscape policies and estimate their gradients.

A nonparametric feature projection framework was proposed for dimensionality
reduction by using mutual information-based stochastic gradient descent in [47].

An iterative algorithm based on stochastic gradient was proposed for cost-efficient
monitoring of spatially correlated signals in [35]. An improvement to that algorithm was
proposed in [36] using weighted stochastic gradient algorithm for cost-efficient track-
ing of spatially correlated signals. Later a SG-based ML algorithm was introduced to
autonomously identify the model parameters for low-cost spatial tracking of correlated
signals in [48]. An accelerated learning algorithm was introduced in [49] to control the
iteration pace of the spatial tracking algorithm. This algorithm shows faster convergence
in spatial modeling of correlated signals.

3. Problem Statement and Background

In this section the technical elements and the background of using SG method as
a cost-efficient approach for monitoring of spatially correlated signals is detailed. The
distribution of an unknown spatially correlated signal such as g(x, y; t) is assumed over an
ad-hoc wireless sensor field. The objective is to monitor this signal in a cost-efficient way
over time using sensor observations of a subset of N0 wireless sensors that are randomly
distributed over the field. It is assumed that (xk, yk), the coordinates of the sensor Sk ∀k, is
known for the fusion center (FC). The spatial correlation of the unknown signal and the
coordinates of the wireless sensors are the only assumptions of this problem.

In WSN, among sensing, computation and communication; communication tangibly
consumes most of the in-network energy. Accordingly, in this paper the percentage of
sensors in which initiate a communication attempt is taken as cost.

To reduce the spatial monitoring cost, the signal is modeled using its M contour lines
at levels {`j}M

j=1. With this model, the spatial signal is compressed into these M contour
lines and only those sensors that their local filtered observations sk ∀k, are within the range
`j − ∆ ≤ sk ≤ `j + ∆, ∀j, k, report to the FC, on demand. It is assumed that the sensor
observations are polluted with additive white Gaussian noise with zero-mean. To reduce
the noise strength, each sensor applies a moving average filter with sufficient window size
on its local samples to effectively reduce the noise effect. In reply to the query of the FC,
the sensor Sk ∀k reports its observation sk = g(xk, yk) + z to the FC, where z is the filtered
noise after local moving average filtering. The moving average filter’s window size (WMA)
can be adjusted, adaptively at each sensor by finding the noise variance, iteratively and
empirically, or setup to a known size, based on previously known information. However,
in this article, WMA is selected constant and equal to 10, for simplicity. Upon reception of
the sensor observations at the FC, a spline interpolation [50] module provides an estimation
of the spatial signal. The FC uses the most recent spatial signal estimation to update the
contour levels {`j}M

j=1. In each iteration and for a finer signal estimation, the FC increases
the number of contour levels, M. The process of incrementing the number of contour levels
continues until convergence of the algorithm. In the course of the signal identification, the
FC discovers the signal strength range: (LMin, LMax), its probability density function (PDF):
fg(s), and the spatial and spectral attributes of the spatial distribution.

By modeling the spatial signal using its M contour lines and calling for the sensor
observations of those sensors that are within ∆ margin of the contour levels {`j}M

j=1, Nr

sensors in average will reporting to the FC, according to (1). Here we assume that the ∆
margin of the neighboring contour lines are disjoint.

Nr = N0

M

∑
k=1

∫ `k+∆

`k−∆
fg(γ)dγ (1)
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Nr in (1) is the mathematical expectation of the number of reporting sensors to the FC.
Conditionally and when ∆ is small enough, (1) is reduced to (2).

Nr ∼= 2N0∆
M

∑
k=1

fg(`k) (2)

According to (1) and (2), Nr, the expected number of reporting sensors to the FC
depends on N0, M, ∆, as well as the perimeter of the contour lines at each level `j,
j = 1, 2, ..., M. By increasing M to get finer signal estimation, the expected value for Nr
(cost) rises.

When ∆ is constant, according to (1) and (2), by increasing the number of contour levels
(M), the number of reporting sensors to the FC increases, where it results in drastic rise in
the cost of spatial monitoring. To meet the energy conservation requirements of WSN, a cost
efficient approach based on using SG was proposed in [35]. The significance of the proposed
stochastic gradient algorithm in [35] is relating the cost of spatiotemporal monitoring to
the spatial monitoring performance. During the iterations steps of the stochastic gradient
algorithm and as the number of contour levels increases, ∆ shrinks, such that at the end,
the expected number of reporting wireless sensors to the FC becomes affordable.

By increasing the number of contour levels, the spatial signal estimation error grad-
ually drops. In the proposed SG method in [35], the contour level margin (∆) is updated
related to the slope of the iteration error, and according to (3). In this equation, the gradient
of error is normalized to average of the error strength after [51], to reduce the relevance of
∆ to the instantaneous error’s magnitude. In (3), ∇Errork−1 = (Errork−1 − Errork−2) and
Errork−1 = 1/2(Errork−1 + Errork−2).

∆k = ∆k−1(1 +
∇Errork−1

2Errork−1
) (3)

Because the actual spatial signal g(x, y) is unknown to the FC, instead of spatial signal
estimation error, iteration error is used in calculation of the gradient. Iteration error is
defined according to (4). The simulation results showed that the iteration error behaves
very noisy in comparison to spatial signal mean absolute error (MAE), which is defined
according to (5) [36].

Errork =
P

∑
i=1

Q

∑
j=1

∣∣g̃k(xi, yj)− g̃k−1(xi, yj)
∣∣

P×Q
(4)

MAEk =
P

∑
i=1

Q

∑
j=1

∣∣g(xi, yj)− g̃k(xi, yj)
∣∣

P×Q
(5)

In (4) and (5), g̃k(xi, yj) is the spatial signal reconstruction from the reported sensor
observations in the kth iteration at grid point coordinate (xi, yj) of the sensor field. The
iteration error and MAE in (4) and (5) are calculated at P× Q grid points of the sensor
field. In calculation of the iteration error and reconstruction error in the paper, we use
mean absolute error (norm-1), instead of mean square error (norm-2), because norm-1 does
not magnify the relatively large errors in the borders of the sensor field. The large errors
in the borders of the sensor field are not recoverable due to sensor selection limitation in
the borderline, therefore its large residual error does not allow to properly shrink ∆ in (3).
Accordingly, norm-1 results in smaller monitoring cost and better spatial modeling error,
in comparison to norm-2 [52].

In selection of the contour levels, equally spaced and optimally spaced contour lines
were considered in [35]. The optimally spaced contour lines were selected based on Lloyd-
Max algorithm [53], according to (6) and (7).
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`i =

∫ yi+1
yi

x fg(x)dx∫ yi+1
yi

fg(x)dx
, i = 1, 2, . . . , M (6)

where yi is calculated according to (7).

yi =
`i + `i−1

2
, i = 1, 2, . . . , M− 1 (7)

The spatial signal monitoring based on modeling with optimally spaced contour lines
outperforms that of the equally spaced contour lines, provided that the PDF of the signal
strength, fg(s) is perfectly known. However, because this PDF is unknown, in this paper
we use optimally spaced contour levels only as benchmark to compare the performance of
spatial monitoring using equally spaced contour lines.

Even though the proposed approach for spatial monitoring in [35] is low cost, however
it does not guarantee that the iterative algorithm meets the monitoring performance of the
benchmark. A cost-efficient weighted SG (WSG) algorithm was proposed in [36] to meet
the performance of the benchmark. The proposed weighted stochastic gradient algorithm
trades-off between the cost and the monitoring performance. In WSG, a constant weight
factor 0 ≤ µ ≤ 1 was added to the normalized gradient term, according to (8).

∆k = ∆k−1(1 + µ
∇Errork−1

2Errork−1
) (8)

The performance evaluation of the WSG algorithm showed that it outperforms the
performance of SG, at no tangible additional monitoring cost [36], if a proper µ is selected.
Extensive performance evaluations using computer simulations showed that WSG samples
the spatial signals related to their rate of spatial variations. This result supports the
sampling theorem requirement that signals with wide bandwidth need to be sampled at
higher rate than that of signals with narrow bandwidth. Also, the performance evaluation
result of WSG showed that the spatial monitoring algorithm converges better than SG [36].

Even though using WSG algorithm for spatial monitoring of signals has promising
outcomes, however searching for the initial factors such as µ, the initial value of ∆ and also
the signal strength range can be cumbersome and this encourages to adapt a ML algorithm
to find the model parameters.

Two update regimes are introduced in the next section to automatically find the model
parameters during the iteration steps of the algorithm. Instead of a constant weight factor
µ, two variable gain stochastic gradient approaches are introduced. The performance
evaluations show that the proposed approaches are low-cost, converge to nearly the same
model parameters, and have low sensitivity to noise than that of WSG and SG.

4. The Proposed Algorithms

The proposed algorithm in [36] improved the performance of the stochastic gradient
algorithm that was introduced in [35], by adding a constant weight factor µ in updating
the value of ∆, according to (8). The study of the convergence of the signal strength
range in spatial monitoring using WSG [36] showed that it smoothly converges toward
the actual signal strength range within a few iteration steps. However finding a proper
value of µ needs extensive initial search. Here, we use this convergence behavior to create
a replacement for the weight factor µ. In this section, two different adjustment methods are
proposed to update weight factor in successive iterations of the algorithm to assign a final
value to ∆. The proposed weight adjustment methods nearly converge to the same final
value of ∆, and according (1) it is expected to have the same tracking cost.

To identify the spatial signal, the sensor observations of selected subsets of wireless
sensors are iteratively used to reconstruct the spatial signal at the FC. The algorithm finds
the model parameters, such as ∆, M, and {`j}M

j=1. Here we use stochastic gradient method
with adapted parameters to identify the model parameters, automatically. Study of the
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convergence of the signal strength range in spatial monitoring using WSG [36] showed
that it smoothly converges to the actual signal strength range within a few iteration steps.
Here, we use this convergence behavior to create a replacement for the weight factor. In
a general trend, in the kth iteration step of the algorithm, the detected signal strength
Rk = (Lmin,k, Lmax,k) becomes closer to the actual signal strength range, where Lmin,k and
Lmax,k are the minimum and the maximum of the spatial signal strength in the kth iteration,
after spline interpolation at the FC, respectively. Here we define the signal strength range-
difference as: RDk = Lmax,k − Lmin,k. The ratio of two successive RDk is define as the signal
strength range span ratio (SRSR) according to (9). It is expected that during the iterations
steps of the algorithm, SRSRk first approaches to the neighborhood of 1.0 and based on the
residual noise in sensor observations, fluctuates around 1.0.

SRSRk =
RDk−1

RDk
(9)

Now, we use SRSRk to modify (3) and (8) and to introduce methods that automatically
initiate and update the model parameters until convergence. We call the first method
adaptive weight stochastic gradient (AWSG) and the second method scaled stochastic gradient
(SSG). These two weight factors were obtained by experiments and after observation of the
variation of SRSRk in the proposed algorithm in [36]. The performance evaluation results
that are given in the next section show that with these changes the algorithm converges
faster than that of [36], it does not need manual setup for µ and also it becomes independent
from the initial guess for ∆0.

Adaptive Weight Stochastic Gradient (AWSG):

In AWSG, we replace µ in (8) with a function of SRSRk. With this change the update
equation for ∆ changes according to (10).

∆k = ∆k−1(1 + µk
∇Errork−1

2Errork−1
) (10)

where µk is according to (11).

µk =

√
SRSRk−1

1 + SRSRk−1
(11)

Scaled Stochastic Gradient (SSG):

In the second method, SSG, the modification factor is applied to (3), instead of (8).
With this change, (3) is modified to (12).

∆k = SRSRk−1 ∆k−1(1 +
∇Errork−1

2Errork−1
) (12)

Besides faster convergence, the recent two changes also help avoid the shrinkage of
∆ faster than that it fails to continue spatial monitoring due to lack of enough reporting
sensor observations.

As previously mentioned, the algorithm is implemented in two phases of spatial
modeling, where the model parameters such as ∆ and {`j}M

j=1 are selected; and spatial
tracking where the algorithm uses the same ∆ and M, and it updates the new contour
levels {`j}M

j=1. The spatial modeling phase continues until convergence of ∆ and the signal
strength range. During the spatial tracking, only those sensors that their observations are
within the ∆ margin of the contour levels are queried. Accordingly, the spatial tracking has
relatively small cost.

Implementation of the Spatial Modeling Phase:

In implementation of the algorithm and for initiation of the spatial modeling, the
FC sends queries to two small groups of randomly picked sensors from the sensor field.
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The average of the sensor observations of these two groups form the Lmin and Lmax. To
accelerate the process and to reduce the number of iterations, the number of contour levels
are incremented for κ = 3.

In step two, the FC selects an initial value for M0, between 3 and 10, then finds the
initial, equally spaced contour levels {`k}M0

k=1 between Lmin and Lmax, and the initial value
for ∆ = (`2 − `1)/2.

Then, in step three, the FC queries the sensor field by sending the {`k}M0
k=1 contour

levels and ∆0, and requests for the reply of those sensors that their sensor observations are
within the range `j − ∆0 ≤ sk ≤ `j + ∆0 , ∀ j, k.

In step four, after receiving the query replies from the sensor field, the spatial signal is
reconstructed at the FC from the sensor observations.

Next, in step five, the new signal strength range (Lmin, Lmax) is found from the recon-
structed signal, M = M1 ← M0 + κ, the new contour levels {`k}

M1
k=1 are calculated, and the

new ∆ is ∆1 = ∆0. Here, κ = 3.
In step six, the FC queries the sensor field by broadcasting M1 new contour levels

and ∆1.
In step seven, after receiving the query replies from the sensor field, the FC attempts

the spatial signal reconstruction.
Then, in step eight, the FC updates the value of ∆ from Equations (10) or (12).
In step nine, the FC calculates the new number of contour levels M← M + κ and their

levels {`k}M
k=1.

In step ten, the FC queries the sensor field by broadcasting the new contour levels
{`k}M

k=1 and requesting the sensor observations of those sensors that falls within range
`j − ∆n ≤ sk ≤ `j + ∆n , ∀ j, k. Similarly, κ = 3.

Then the FC repeats the process from step seven, until convergence.
The summary of the discussed algorithm for spatial modeling phase is presented in

Table 2.

Spatial Tracking Phase:

After convergence of the algorithm in spatial modeling phase, the FC uses the same
final ∆ and the same number of contour levels M at convergence, and just updates the
contour level set {`k}M

k=1, on demand.

Table 2. Summary of the proposed algorithm.

1. The FC queries two small sets of sensors at random locations for the signal strength range (Lmin, Lmax).
2. With initial M = M0 contour levels, the FC finds {`i}

M0
i=1 in (Lmax , Lmin) and ∆0 = (`2 − `1)/2.

3. The FC queries the sensor field with the {`i}
M0
i=1 and ∆ = ∆0.

4. The FC receives those sensor observations that are in ∆ margin of the contour levels and reconstructs
the spatial signal.

5. The FC updates the signal strength range (Lmin, Lmax) and M = M1 ← M0 + κ and uses the same
∆1 = ∆0.

6. The FC queries the sensor field with the new M, {`i}
M1
i=1 and ∆.

7. The FC receives the query replies, reconstructs the signal, find the new signal strength range.
8. The FC finds the new ∆ according to either (10) or (12).
9. The FC finds the new M← M + κ and the set of equally spaced levels {`i}M

i=1.
10. Th FC queries the sensor network with the new M, {`i}M

i=1 and ∆.
11. Repeat from Step (7), until convergence.

5. Performance Evaluation

For performance evaluation of the proposed ML algorithm, first we introduce the
spatial signal construction model and also the simulation assumptions. Then, in the next
part of this section, the performance evaluation results will be given.

5.1. Spatial Signal Model and Assumptions

To construct the spatial signal, similar to [35,36], diffusion model is used to synthesize
the spatial signal. The reasons for using this model are its simplicity and capability to
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analytically change the spatial signal in performance evaluation of the algorithm in spatial
tracking. The diffusion model was introduced to model the correlated spatial signals [54].

In the proposed ad-hoc WSN problem, the wireless sensor nodes are assumed ran-
domly distributed, with Poisson distribution over a known area A with dimensions of
100 × 100. It is assumed that the network is localized, meaning that the FC knows the co-
ordinates of the wireless sensors. Each and every of the wireless sensors in the sensor field
can communicate with the FC, either by multi-hopping or by direct communication. For
performance evaluation of the proposed algorithm, we used MATLAB. The related simulation
codes are available online for verification purpose [55].

The correlated spatial signal g(x, y) is analytically formed using (13). According to
this approach the synthetic signal is formed by superposition of a large number of two-
dimensional Gaussian distributions G(mx, my, σ), that are randomly distributed at center
points (mx, my), over the sensor field, each formed according to (14).

g(x, y) =
N1

∑
p=1

apG(mxp, myp, σ1) +
N2

∑
p=1

bpG(m̂xp, m̂yp, σ2) (13)

G(mx, my, σ) = exp(− (x−mx)2 + (y−my)2

2σ2 ) (14)

The synthetic spatial signal is formed by summation of two groups of Gaussian
distributions with two different standard deviations of σ = σ1 or σ2, as it is detailed
in (13). The coefficients ap and bp in (13) are random positive weight factors for the spatial
Gaussian signals, so that the final synthetic signal is limited inside a range (0, 100). Figure 3,
illustrates an instance of the synthetic spatial signal constructed using (13). For generation
of this spatial signal, σ1 and σ2 are assumed equal to 5 and 10, respectively.

For this performance evaluation we assumed either 10,000 or 12,000 wireless sensors
in the sensor field. The MAE of the proposed algorithm, its cost and also the convergence
of the algorithm are investigated based on extensive computer simulations. As benchmark
and for comparison, similar to [35,36], spatial modeling is used with optimal contour
levels, based on Lloyd-Max, according to (6) and (7), when the PDF of the signal strength
is assumed.

5.2. Performance Evaluation Results

Spatial Modeling MAE:

The spatial modeling MAE of the proposed ML algorithm for modeling of Figure 3 at
different noise strengths is illustrated in Figures 4 and 5. Figure 4, compares the spatial
modeling of AWSG, WSG and benchmark (Lloyd-Max). As this figure illustrates, AWSG,
similar to WSG [36], converges to the modeling performance of benchmark, at the same
observation noise strength. According to this result, AWSG converges a bit faster than
that of WSG. Figure 5, compares the convergence of AWSG and SSG, where it shows that
SSG converges in most of the cases slightly faster than AWSG. In this paper, the spatial
modeling errors (MAE and RMSE) are sketched in dB, MAEk(dB) = 20Log10 AMEk, ∀k.
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Figure 3. The synthetic correlated spatial signal is generated using the described model in (13).

Figure 4. Comparison between the spatial modeling MAE of AWSG and WSG in the presence of
different noise strengths σN , during convergence process of the algorithm.

The modeling performance of AWSG using norm-2, which is defined in (15), is com-
pared with norm-1 (MAE), in Figure 6. According to this result, the modeling performance
using norm-1 (MAE) is around 3 dB better than that of norm-2, which is root mean square er-
ror (RMSE). Norm-2 results in poorer modeling performance, because it magnifies the large
error spikes that usually happens in borderlines, where the sensor population is limited.

RMSEk =

√√√√ P

∑
i=1

Q

∑
j=1

[g(xi, yj)− g̃k(xi, yj)]2

P×Q
(15)
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Figure 5. Comparison between the convergence speed of AWSG and SSG, during convergence
process of the algorithm.

Figure 6. Comparison between the spatial modeling error of norm-1 (MAE) and norm-2 (RMSE) in
convergence process of AWSG.

Spatial Modeling Cost:

The relative spatial modeling cost of the proposed ML algorithm for AWSG and
SSG is presented in Figure 7. The relative spatial modeling cost is calculated based on
R = CostSSG(k)/CostAWSG(k). According to this figure, AWSG has relatively smaller
spatial modeling cost than that of SSG. Also as this figure shows, by increasing the standard
deviation of noise from σ = 0.1 to 0.3, the cost of the algorithm (the percentage of the
reporting wireless sensor nodes to the FC), increases, due to increase in false detections.
Increase in the number of false detection due to the presence of observation noise has been
addressed in other literature, as well [25].
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Figure 7. Comparison between the spatial modeling cost of AWSG and SSG. The relative cost
R = CostSSG(k)/CostAWSG(k) is sketched for two different filtered noise strength in sensor observations.

Spatial Tracking Cost:

The spatial tracking cost of the proposed ML algorithm using SSG is illustrated in
Figure 8. According to this figure, as the observation noise’s strength increases, the tracking
cost of the algorithm, rises. However, the percentage of reporting sensors to the FC is
maintained around 10% or less, when the standard deviation of the additive filtered noise
is below 0.5. According to (1), the number of reporting sensors to the FC depends on
∆. Later in this section we show that the final ∆ for SSG and AWSG is almost the same.
Accordingly, we expect that the cost of AWSG and SSG be nearly the same. Evaluations
based on computer simulations proves this expectation.

Figure 8. The tracking cost of SSG for several filtered observation noise strengths, during several
tracking instances. The sensors apply moving average filter on their local observations to reduce the
effect of additive noise.
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The effect of sensor population on spatial modeling’s cost using AWSG is illustrated
in Figure 9. The results of this figure are related to observation noise of σNoise = 0.3 and
two sensor population of 10,000 and 12,000. According to this figure, with 10,000 sensors in
the sensor field, around 8.5% of the sensors (around 850 sensors), report to the FC. Once the
sensor population increases to 12,000 sensors, the total reporting sensors is 7.45% (around
895 sensors). This outcome that was also reported for WSG in [36], states that by increasing
the number of sensors in the sensor field, the cost of the algorithm does not tangibly rise.

Figure 9. The percentage of reporting sensors to the FC for two different sensor populations. The
number of reporting sensors does not tangibly change, when the sensor population changes.

Spatial Tracking MAE:

The spatial modeling AME of AWSG at different observation noise’s strength are
illustrated in Figure 10. A comparison between the results of this figure and Figures 4 and 5,
clears that the spatial tracking MAE of the proposed tracking algorithm is about the same
as that of spatial modeling MAE after convergence. Therefore, using the final spatial
modeling parameters for tracking is a tractable approach. According to Figure 10, as the
spatial signal changes due to its temporal variations, the spatial tracking MAE slightly
increases. As result, in the course of time the model gradually becomes poorer and another
round of spatial modeling will be required.

Convergence of ∆:

The variation of ∆ in the course of the convergence for AWSG and SSG is illustrated
in Figure 11. According to this figure, in SSG ∆ sharply rises first and then aggressively
drops until convergence. This figure also shows that ∆ in AWSG gradually drops in the
course of the convergence of the algorithm. This figure shows that both SSG and AWSG
converge to around the same final values. According to this figure, and based on (1), it is
expected that the tracking cost of AWSG and SSG be around the same value. Also, due to
the sharp rise in ∆ in SSG, the relative cost of AWSG over SSG drops suddenly. This fact
is illustrated in Figure 7. The results of Figure 11 also show that ∆ is slightly sensitive to
observation noise’s strength.
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Figure 10. The spatial tracking MAE of AWSG at different observation noise’s strength. As the
standard deviation of the observation noise increases, the modeling performance drops.

Figure 11. Variation of ∆ in the course of convergence in SSG and AWSG in the presence of filtered
observation noise.

Signal Strength Range Span Ratio (SRSR):

Convergence of SRSRk , ∀k during the spatial modeling process is the other factor,
which is used in development of AWSG and SSG in (10) and (12), respectively. SRSR,
which is defined in (6) converges to around 1.0, in the course of spatial modeling. This
convergence is illustrated in Figure 12. According to this figure, the presence of noise
results in some final misadjustment and noisy variation around 1.0. By increase of the noise
strength in sensor observations the misadjustment is expected to rise.



Sensors 2021, 21, 5175 16 of 18

Figure 12. Convergence of SRSR during the iteration steps of the algorithm. The effect of observation
noise is some misadjustment in value of SRSR after convergence.

6. Conclusions

Two machine learning (ML) approaches based on adaptive weight stochastic gradient
(AWSG) and scaled stochastic gradient (SSG) are proposed and discussed for spatial signal
modeling and tracking. The spatial signal, which is monitored using sensor observations,
is modeled with a number of its contour lines at equally spaced levels. The fusion center
(FC) calls for a subset of sensor observations that fall within a given ∆ margin of each of
these contour levels. The ML algorithm iteratively varies the number of contour levels and
∆ until convergence. Convergence of ∆ and the signal strength’s range are two measures
that can be used for convergence of the algorithm. Performance evaluations based on
computer simulations show that the proposed algorithms have relatively the same cost
and modeling/tracking performance. The tracking cost of the algorithm is around 10%
or less, when the filtered observation noise’s standard deviation is around 0.5 or less.
With the increase of observation noise strength, the cost also increases. The number of
reporting sensors to the FC remains almost the same, when the sensor population increases.
The tracking MAE of AWSG and SSG are around the spatial modeling MAE, in the same
noise strength.
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