PHY, MAC, and RLC Layer Based Estimation of Optimal Cyclic Prefix Length
Abstract
:1. Introduction
1.1. PHY-Only BER-Based Indication of Oversized CP Length
1.2. Motivation for PHY/MAC/RLC-Based CP Length Model
2. Optimal CP Length Model
2.1. Effective Average Codeblock Length
2.2. Optimal CP Length for Minimal Codeblock Average Gross Length
2.3. Time-Dispersion-Only Related Residual BER for Optimal CP Length
3. Numerical Results
3.1. Setup of Coding and Channel Parameters
3.1.1. Power-Delay Profile
3.1.2. BLER Reductions
3.2. Analysis of Numerical Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lipovac, A.; Lipovac, V.; Njemčević, P. Suppressing the OFDM CFO-Caused Constellation Symbol Phase Deviation by PAPR Reduction. Wirel. Commun. Mob. Comput. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Lipovac, A.; Lipovac, V.; Modlic, B. Modeling OFDM Irreducible BER with Impact of CP Length and CFO in Multipath Channel with Small Delay Dispersion. Wirel. Commun. Mob. Comput. 2016, 16, 1065–1077. [Google Scholar] [CrossRef]
- 3GPP TS 36.211. Physical Channels and Modulation (Release 8). Available online: https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/08.07.00_60/ts_136211v080700p.pdf (accessed on 8 July 2021).
- 3GPP TR 25.943. Deployment Aspects (Release 9). Available online: https://www.etsi.org/deliver/etsi_tr/125900_125999/125943/09.00.00_60/tr_125943v090000p.pdf (accessed on 8 July 2021).
- Batariere, M.; Baum, K.; Krauss, T.P. Cyclic Prefix Length Analysis for 4G OFDM systems. In Proceedings of the Vehicular Technology Conference, VTC2004-Fall, Los Angeles, CA, USA, 26–29 September 2004; pp. 543–547. [Google Scholar]
- Shah, D.C.; Rindhe, B.U.; Narayankhedkar, S.K. Effects of Cyclic Prefix on OFDM System. In Proceedings of the International Conference and Workshop on Emerging Trends in Technology, Mumbai, India, 26–27 February 2010; pp. 420–424. [Google Scholar]
- Payaswini, P.; Manjaiah, D.H. Analysis of Effect of Cyclic Prefix on Data Rates in OFDM Modulation Techniques. Int. J. Adv. Res. Comput. Math. Sci. 2012, 3, 465–470. [Google Scholar]
- Zhang, Z.; Li-Feng, L. A Novel OFDM Transmission Scheme with Length-adaptive Cyclic Prefix. J. Zhejiang Univ. Sci. 2004, 5, 1336–1342. [Google Scholar]
- Lim, C.; Chang, Y.; Cho, J.; Joo, P.; Lee, H. Novel OFDM Transmission Scheme to Overcome ISI Caused by Multipath Delay Longer than Cyclic Prefix. In Proceedings of the Vehicular Technology Conference, VTC 2005-Spring, Stockholm, Sweden, 30 May–1 June 2005; pp. 1763–1767. [Google Scholar]
- Al-Jazari, A.; Kostanic, I. Cyclic Prefix Length Determination for Orthogonal Frequency Division Multiplexing System over Different Wireless Channel Models Based on the Maximum Excess Delay Spread. Am. J. Eng. Appl. Sci. 2015, 8, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Lien, S.Y.; Shieh, S.L.; Huang, Y.; Su, B.; Hsu, Y.L.; Wei, H.Y. Waveform and Numerology to Support 5G Services and Requirements. IEEE Comm. Mag. 2017, 55, 64–71. [Google Scholar] [CrossRef]
- Gkonis, P.K.; Trakadas, P.T.; Kaklamani, D.I. A Comprehensive Study on Simulation Techniques for 5G Networks: State of the Art Results, Analysis, and Future Challenges. Electronics 2020, 9, 468. [Google Scholar] [CrossRef] [Green Version]
- Farhang-Boroujeny, B.; Moradi, H. OFDM Inspired Waveforms for 5G. IEEE Commun. Surv. Tutor. 2016, 18, 2474–2492. [Google Scholar] [CrossRef]
- Kong, D.; Liu, P.; Fu, Y.; Ding, J.; Quek, T.Q.S. Reduction of Cyclic Prefix Overhead in Narrow-Band Internet of Things (NB-IoT) Systems. IEEE Wirel. Commun. Lett. 2021, 10, 517–521. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Lyu, B.; Meng, W. Symbol Cyclic Shift Equalization PAM-OFDM—A Low Complexity CP-Free OFDM Scheme. IEEE Trans. Veh. Technol. 2017, 66, 5933–5946. [Google Scholar] [CrossRef]
- Chern, S.; Huang, H.C.; Hsin-Hsyong Yang, R. Performance of CP-free ST-BC MIMO-OFDM system under IQ-imbalance in multipath channel. In Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems, Chengdu, China, 6–8 December 2010; pp. 1–4. [Google Scholar]
- Bae, J.N.; Kim, Y.H.; Kim, J.Y. MIMO OFDM system with AMC and variable CP length for wireless communications. In Proceedings of the 9th International Symposium on Communications and Information Technology, Icheon, Korea, 28–30 September 2009; pp. 16–20. [Google Scholar]
- Mohammed, U.S.; Tohamy, A. A low complexity OFDM system with minimum intersymbol interference. In Proceedings of the 5th Joint IFIP Wireless and Mobile Networking Conference (WMNC), Bratislava, Slovakia, 19–21 September 2012; pp. 22–29. [Google Scholar]
- 3GPP TR 36.873. Study on 3D Channel Model for LTE (Release 12). Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2574 (accessed on 8 July 2021).
- 3GPP TR 38.901. Study on Channel Model for Frequencies from 0.5 to 100 GHz (Release 14). Available online: https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/14.00.00_60/tr_138901v140000p.pdf (accessed on 8 July 2021).
- ITU-T Recommendation G.821, 12/2002. Available online: https://www.itu.int/itu-t/recommendations/rec.aspx?rec=6185 (accessed on 8 July 2021).
- Rumnay, M. LTE and the Evolution of 4G Wireless. In Design and Measurements Challenges, 2nd ed.; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Pagès, A.S. Link Level Performance Evaluation and Link Abstraction for LTE/LTE-Advanced Downlink. Ph.D. Thesis, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain, 2015. [Google Scholar]
- Latif, I.; Kaltenberger, F.; Knopp, R.; Olmos, J. Low Complexity Link Abstraction for Retransmission in LTE/LTE-Advanced with IR-HARQ; EURO-COST, IC1004 TD(12)0506; Eurecom: Bristol, UK, 2012. [Google Scholar]
- Hamza, M.; Lipovac, V.; Lipovac, A. BER-based BLER Prediction for LTE FDD DL Channel with Small Delay Dispersion. In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, Croatia, 24–28 August 2015; pp. 1156–1161. [Google Scholar]
- Ikuno, J.C.; Mehlfuhrer, C.; Rupp, M. A Novel Link Error Prediction Model for OFDM Systems with HARQ. In Proceedings of the IEEE International Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–5. [Google Scholar]
- Wu, P.; Jindal, N. Coding versus ARQ in Fading Channels: How Reliable Should the PHY Be? In Proceedings of the GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–6. [Google Scholar]
- Wu, P.; Jindal, N. Performance of Hybrid-ARQ in Block-fading Channels: A Fixed Outage Probability Analysis. IEEE Trans. Commun. 2010, 58, 1129–1141. [Google Scholar] [CrossRef] [Green Version]
- MathWorks, Estimate Turbo Code BER Performance in AWGN. Available online: https://www.mathworks.com/help/comm/ug/estimate-turbo-code-ber-performance-in-awgn.html (accessed on 20 May 2019).
Parameter/Numerology | Subcarrier Spacing (kHz) | OFDM Symbol Length (μs) | CP Length (μs) |
---|---|---|---|
0 | 15 | 66.67 | 4.69 |
1 | 30 | 33.33 | 2.34 |
2 | 60 | 16.67 | 1.17 |
3 | 120 | 8.33 | 0.57 |
4 | 140 | 4.17 | 0.29 |
Rms Delay Spread | Codeblock Length | ||
---|---|---|---|
L = 1536 | L = 3072 | L = 6144 | |
100 ns | 79.3% | 77.7% | 74.9% |
200 ns | 56.1% | 51.1% | 46.7% |
300 ns | 29.6% | 22.5% | 17.4% |
400 ns | 3.4% | −17.0% | −19.2% |
Rms Delay Spread | Codeblock Length | ||
---|---|---|---|
L = 1536 | L = 3072 | L = 6144 | |
100 ns | 80.6% | 77.9% | 76.3% |
200 ns | 57.0% | 53.2% | 47.7% |
300 ns | 31.3% | 26.0% | 19.1% |
400 ns | 7.6% | −16.1% | −18.5% |
Rms Delay Spread | Codeblock Length | ||
---|---|---|---|
L = 1536 | L = 3072 | L = 6144 | |
100 ns | 81.4% | 79.2% | 77.0% |
200 ns | 59.1% | 53.5% | 49.2% |
300 ns | 34.7% | 27.1% | 21.8% |
400 ns | 9.6% | −14.9% | −17.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipovac, A.; Lipovac, V.; Modlic, B. PHY, MAC, and RLC Layer Based Estimation of Optimal Cyclic Prefix Length. Sensors 2021, 21, 4796. https://doi.org/10.3390/s21144796
Lipovac A, Lipovac V, Modlic B. PHY, MAC, and RLC Layer Based Estimation of Optimal Cyclic Prefix Length. Sensors. 2021; 21(14):4796. https://doi.org/10.3390/s21144796
Chicago/Turabian StyleLipovac, Adriana, Vlatko Lipovac, and Borivoj Modlic. 2021. "PHY, MAC, and RLC Layer Based Estimation of Optimal Cyclic Prefix Length" Sensors 21, no. 14: 4796. https://doi.org/10.3390/s21144796