Fabrication and Qualitative Analysis of an Optical Fibre EFPI-Based Temperature Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Optical Components
2.2. Novel Diaphragm Manufacturing Technique
2.3. Manufacturing the Temperature Sensor
2.4. Interrogation of the Temperature Sensors
2.5. Sensor Testing Using a Thermogravimetric Analyser
3. Results
4. Discussion
4.1. Discussion on the Manufacturing Process
4.2. Discussion on the Experimental Results
4.3. Future Work
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOA | Arc-on Alignment |
EFPI | Extrinsic Fabry-Perot Interferometer |
FBG | Fibre-Bragg Grating |
HF | Hydrofluoric Acid |
IPA | Isopropyl Alcohol |
MFD | Mode Field Diameter |
MMF | Multimode Fibre |
OFPS | Optical Fibre Pressure Sensor |
OSA | Optical Spectrum Analyser |
PVA | Polyvinyl Alcohol |
SAE | Society of Automotive Engineers |
SMF | Single Mode Fibre |
TGA | Thermogravimetric Analyser |
UHRTS | Ultra High Resolution Temperature Sensor |
References
- Kennan, R.P.; Kim, D.; Maki, A.; Koizumi, H.; Constable, R.T. Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI. Hum. Brain Mapp. 2002, 16, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Pinet, É.; Hamel, C.; Glišić, B.; Inaudi, D.; Miron, N. Health monitoring with optical fiber sensors: From human body to civil structures. In Health Monitoring of Structural and Biological Systems; International Society for Optics and Photonics: Bellingham, WA, USA, 2007. [Google Scholar] [CrossRef]
- Hong, S.; Jung, W.; Kim, T.; Oh, K. Compact Biocompatible Fiber Optic Temperature Microprobe Using DNA-Based Biopolymer. J. Light. Technol. 2018, 36, 974–978. [Google Scholar] [CrossRef]
- Avino, S.; D’Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G. Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities. Sensors 2015, 15, 4242–4252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yada, R.; Maenaka, K.; Miyamoto, S.; Okada, G.; Sasakura, A.; Ashida, M.; Adachi, M.; Sato, T.; Wang, T.; Akasaka, H.; et al. Real-time in vivo dosimetry system based on an optical fiber-coupled microsized photostimulable phosphor for stereotactic body radiation therapy. Med. Phys. 2020, 47, 5235–5249. [Google Scholar] [CrossRef] [PubMed]
- Begum, M.; Rahman, A.M.; Abdul-Rashid, H.; Yusoff, Z.; Mat Nawi, S.N.; Khandaker, M.U.; Bradley, D. Photonic crystal fibre as a potential medium for radiotherapy dosimetry. Appl. Radiat. Isot. 2021, 174, 109771. [Google Scholar] [CrossRef] [PubMed]
- Filograno, M.L.; Pisco, M.; Catalano, A.; Forte, E.; Aiello, M.; Cavaliere, C.; Soricelli, A.; Davino, D.; Visone, C.; Cutolo, A.; et al. Triaxial Fiber Optic Magnetic Field Sensor for Magnetic Resonance Imaging. J. Light. Technol. 2017, 35, 3924–3933. [Google Scholar] [CrossRef]
- Yaras, Y.S.; Satir, S.; Ozsoy, C.; Ramasawmy, R.; Campbell-Washburn, A.E.; Lederman, R.J.; Kocaturk, O.; Degertekin, F.L. Acousto-Optic Catheter Tracking Sensor for Interventional MRI Procedures. IEEE Trans. Biomed. Eng. 2019, 66, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Uzun, D.; Ulgen, O.; Kocaturk, O. Optical Force Sensor With Enhanced Resolution for MRI Guided Biopsy. IEEE Sens. J. 2020, 20, 9202–9208. [Google Scholar] [CrossRef]
- Woulfe, P.; Sullivan, F.J.; Kam, W.; O’Keeffe, S. Optical fiber dosimeter for real-time in-vivo dose monitoring during LDR brachytherapy. Biomed. Opt. Express 2020, 11, 4027. [Google Scholar] [CrossRef] [PubMed]
- Poduval, R.K.; Coote, J.M.; Mosse, C.A.; Finlay, M.C.; Desjardins, A.E.; Papakonstantinou, I. Precision-microfabricated fiber-optic probe for intravascular pressure and temperature sensing. IEEE J. Sel. Top. Quantum Electron. 2021, 27. [Google Scholar] [CrossRef]
- Ülgen, O.; Shnaiderman, R.; Zakian, C.; Ntziachristos, V. Interferometric optical fiber sensor for optoacoustic endomicroscopy. J. Biophotonics 2021, 1–10. [Google Scholar] [CrossRef]
- Huang, X.; Li, M.; Rong, Q.; Wang, F.; Zheng, P.; Xie, F. Digital telemetry thermometer based on quartz crystal sensor. In Proceedings of the ICMIT 2005: Information Systems and Signal Processing, Chongqing, China, 20–23 September 2005. [Google Scholar]
- Hammond, D.L.; Benjaminson, A. The Linear Quartz Thermometer-a New Tool for Measuring Absolute and Difference Temperatures. Hewlett-Packard J. 1965, 16, 1–7. [Google Scholar]
- Poeggel, S.; Duraibabu, D.; Dooly, G.; Lewis, E.; Leen, G. Novel ultrahigh resolution optical fibre temperature sensor. Int. Soc. Opt. Photonics 2016, 9916, 991605. [Google Scholar] [CrossRef]
- McGuinness, F.; Leen, G.; Lewis, E.; Dooly, G.; Toal, D.; Babu Duraibabu, D. Review of Liquid-Filled Optical Fibre-Based Temperature Sensing. In Applications of Optical Fibers for Sensing; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yu, B.; Wu, X.; Shi, J.; Ge, Q.; Zhang, G.; Guo, M.; Zhang, Y.; Fang, S.; Zuo, C. Low-cost fiber optic extrinsic Fabry–Perot interferometer based on a polyethylene diaphragm for vibration detection. Opt. Commun. 2020, 457, 124332. [Google Scholar] [CrossRef]
- Liao, C.; Liu, S.; Xu, L.; Wang, C.; Wang, Y.; Li, Z.; Wang, Q.; Wang, D.N. Sub-micron silica diaphragm-based fiber-tip Fabry–Perot interferometer for pressure measurement. Opt. Lett. 2014, 39, 2827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, R.; Bilro, L.; Nogueira, R.; Rocha, A.M. Adhesive Based Fabry-Pérot Hydrostatic Pressure Sensor With Improved and Controlled Sensitivity. J. Light. Technol. 2019, 37, 1909–1915. [Google Scholar] [CrossRef]
- Zhang, J.; Liao, H.; Lu, P.; Jiang, X.; Fu, X.; Ni, W.; Liu, D.; Zhang, J. Ultrasensitive Temperature Sensor With Cascaded Fiber Optic Fabry–Perot Interferometers Based on Vernier Effect. IEEE Photonics J. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Bremer, K.; Lewis, E.; Moss, B.; Leen, G.; Lochmann, S.; Mueller, I.; Bremer, K.; Lewis, E.; Mueller, I.; Leen, G.; et al. Conception and preliminary evaluation of an optical fibre sensor for simultaneous measurement of pressure and temperature. J. Physics: Conf. Ser. 2009, 178, 012016. [Google Scholar] [CrossRef] [Green Version]
- Bremer, K.; Lewis, E.; Leen, G.; Moss, B.; Lochmann, S.; Mueller, I. Fabrication of a miniature all-glass fibre optic pressure and temperature sensor. Procedia Eng. 2011, 25, 503–506. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Unit |
---|---|---|
Prefusion | 1 | s |
Prefusion Current | 10 | mA |
Gap | 50 | μm |
Overlap | 10 | μm |
Fusion Time 1 | 0.03 | s |
Fusion Current 1 | 10.5 | mA |
Fusion Time 2 | 10 | s |
Fusion Current 2 | 11 | mA |
Fusion Time 3 | 1 | s |
Left MFD | 9.8 | μm |
Right MFD | 9.8 | μm |
Set Centre | 255 | - |
AOA Current | 0 | mA |
Early Prefuse | No | - |
Parameter | Value | Unit |
---|---|---|
Cleaning Current | 10.0 | mA |
Cleaning Time | 0.05 | s |
z-gap | 3.00 | μm |
Autofeed | 0.00 | μm |
Prefusion Current | 10.0 | mA |
Prefusion Time | 2.50 | s |
Fusion Current | 10.0 | mA |
Fusion Time | 10.0 | s |
Tensile Test | No | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGuinness, F.; Cloonan, A.; Oubaha, M.; Duraibabu, D.B.; Ali, M.M.; Kilkelly, G.; Tobin, E.; Leen, G. Fabrication and Qualitative Analysis of an Optical Fibre EFPI-Based Temperature Sensor. Sensors 2021, 21, 4445. https://doi.org/10.3390/s21134445
McGuinness F, Cloonan A, Oubaha M, Duraibabu DB, Ali MM, Kilkelly G, Tobin E, Leen G. Fabrication and Qualitative Analysis of an Optical Fibre EFPI-Based Temperature Sensor. Sensors. 2021; 21(13):4445. https://doi.org/10.3390/s21134445
Chicago/Turabian StyleMcGuinness, Fintan, Aidan Cloonan, Mohamed Oubaha, Dinesh Babu Duraibabu, M. Mahmood Ali, Gerald Kilkelly, Emma Tobin, and Gabriel Leen. 2021. "Fabrication and Qualitative Analysis of an Optical Fibre EFPI-Based Temperature Sensor" Sensors 21, no. 13: 4445. https://doi.org/10.3390/s21134445
APA StyleMcGuinness, F., Cloonan, A., Oubaha, M., Duraibabu, D. B., Ali, M. M., Kilkelly, G., Tobin, E., & Leen, G. (2021). Fabrication and Qualitative Analysis of an Optical Fibre EFPI-Based Temperature Sensor. Sensors, 21(13), 4445. https://doi.org/10.3390/s21134445