Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications
Abstract
1. Introduction
- Use of the MS algorithm (MSA) to obtain an optimal solution for the antenna module of an electromagnetic radiation harvesting system.
- Performance improvement of the IMN based on a three-step process that includes the minimization of the reflection coefficient (stopping criterion of −20 dB), the minimization of the magnitude variations at the frequencies of operation over an RF input power range of 20 dB (−10 dBm to 10 dBm), and the maximization of the provided DC output voltage at the same range of RF input power.
2. Materials and Methods
2.1. Moth Search Algorithm Description
| Algorithm 1 Pseudo-code of the Moth Search Algorithm. |
|
2.2. MSA Performance Evaluation
- Number of independent trials: 100
- Number of iterations: 1000
- Population size: 100
- Number of decision variables: 30
- Bounds of decision variables: [−10 10]
2.3. Triple-Band Single-Layer Rectenna
2.3.1. Antenna Design Procedure
- is the vector representing the solution (each value of the solution vector corresponds to the members of the moth population) of the proposed antenna geometry at each iteration,
- , , and are the values of the reflection coefficient at the solution frequencies, which fall into the desired frequency bands of LoRa, GSM-1800, and UMTS-2100,
- is the specific limit of the reflection coefficient whether a current solution of the optimization process is accepted or not ( = −10 dB), and
- is a very large number that is assigned to the current solution ( magnitude) of the optimization process ( = 1 × 1012).
- Total population number of moths : 50
- Number of sub-population : 25
- Number of sub-population : 25
- Number of decision variables : 13
- Maximum number of generations : 1000
- Number of independent trials: 10
2.3.2. Proposed RF-to-DC Rectifier Design
2.3.3. Rectenna Prototype Fabrication
3. Results and Discussion
3.1. Experimental Setup
- Signal Generator (© IFR Ltd. 1999), Model: IFR, Operating Frequency: 9 kHz to 2.51 GHz
- Antenna (© Keysight Technologies 2000–2021), Model: HP 11966E Double-Ridged Waveguide Horn Antenna EMCO No 3115, Operating Frequency: 1 GHz to 18 GHz (calibrated down to 750 MHz)
- Vector Network Analyzer (© 2020 Agilent Technologies, Inc.), Model: E5062A ENA-L RF Network Analyzer, Operating Frequency: 300 kHz to 3 GHz
- Spectrum Analyzer (© Keysight Technologies 2000–2021), Model: HP 8593EM EMC Analyzer, Operating Frequency: 9 kHz to 22 GHz
- Digital Multimeter (© Keysight Technologies 2000–2021), Model: U1242C RMS Digital Multimeter
3.2. Proposed Antenna Results
3.3. Proposed RF-to-DC Rectifier Results
3.4. Proposed Rectenna Performance Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Test Functions
- Achkely Function: , where d denotes the number of dimensions, a = 20, b = 0.2, and c = 2
- Bukin Function No. 6:
- Levy No. 13 Function:
- Schaffer No. 2 Function:
- Shubert Function:
- Perm Function: , where d denotes the number of dimensions and is a constant number (default value is 10)
- Sphere Function: , where d denotes the number of dimensions
- Sum of Different Powers Function: , where d denotes the number of dimensions
- Booth Function:
- Hartmann 3D Function: , where , , and
References
- Kanoun, O.; Bradai, S.; Khriji, S.; Bouattour, G.; El Houssaini, D.; Ben Ammar, M.; Naifar, S.; Bouhamed, A.; Derbel, F.; Viehweger, C. Energy-Aware System Design for Autonomous Wireless Sensor Nodes: A Comprehensive Review. Sensors 2021, 21, 548. [Google Scholar] [CrossRef]
- Harb, A. Energy harvesting: State-of-the-art. Renew. Energy 2011, 36, 2641–2654. [Google Scholar] [CrossRef]
- Ibrahim, H.H.; Singh, M.S.J.; Al-Bawri, S.S.; Islam, M.T. Synthesis, Characterization and Development of Energy Harvesting Techniques Incorporated with Antennas: A Review Study. Sensors 2020, 20, 2772. [Google Scholar] [CrossRef]
- Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless Networks with RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2015, 17, 757–789. [Google Scholar] [CrossRef]
- Niotaki, K.; Kim, S.; Jeong, S.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. A Compact Dual-Band Rectenna Using Slot-Loaded Dual Band Folded Dipole Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1634–1637. [Google Scholar] [CrossRef]
- Visser, H.J.; Vullers, R.J.M. RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements. Proc. IEEE 2013, 101, 1410–1423. [Google Scholar] [CrossRef]
- Sim, Z.W.; Shuttleworth, R.; Alexander, M.J.; Grieve, B.D. Compact Patch Antenna Design for Outdoor RF Energy Harvesting in Wireless Sensor Networks. Prog. Electromagn. Res. 2010, 105, 273–294. [Google Scholar] [CrossRef]
- Arrawatia, M.; Baghini, M.S.; Kumar, G. Differential Microstrip Antenna for RF Energy Harvesting. IEEE Trans. Antennas Propag. 2015, 63, 1581–1588. [Google Scholar] [CrossRef]
- Georgiadis, A.; Andia, G.V.; Collado, A. Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic (EM) energy harvesting. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 444–446. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Gotsis, A.; Wan, S.; Sarigiannidis, P.; Nikolaidis, S.; Goudos, S.K. Smart Irrigation System for Precision Agriculture—The AREThOU5A IoT Platform. IEEE Sens. J. 2020. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Millimeter-Wave Power Harvesting: A Review. IEEE Open J. Antennas Propag. 2020, 1, 560–578. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Pierezan, J.; Mariani, V.C.; Coelho, L.S.; Sarigiannidis, P.; Koulouridis, S.; Goudos, S.K. Multiband Patch Antenna Design Using Nature-Inspired Optimization Method. IEEE Open J. Antennas Propag. 2020, 2, 151–162. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Rectennas for Radio-Frequency Energy Harvesting and Wireless Power Transfer: A Review of Antenna Design [Antenna Applications Corner]. IEEE Antennas Propag. Mag. 2020, 62, 95–107. [Google Scholar] [CrossRef]
- Shen, S.; Chiu, C.; Murch, R.D. A Dual-Port Triple-Band L-Probe Microstrip Patch Rectenna for Ambient RF Energy Harvesting. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3071–3074. [Google Scholar] [CrossRef]
- Chandravanshi, S.; Sarma, S.S.; Akhtar, M.J. Design of Triple Band Differential Rectenna for RF Energy Harvesting. IEEE Trans. Antennas Propag. 2018, 66, 2716–2726. [Google Scholar] [CrossRef]
- Palazzi, V.; Hester, J.; Bito, J.; Alimenti, F.; Kalialakis, C.; Collado, A.; Mezzanotte, P.; Georgiadis, A.; Roselli, L.; Tentzeris, M.M. A Novel Ultra-Lightweight Multiband Rectenna on Paper for RF Energy Harvesting in the Next Generation LTE Bands. IEEE Trans. Microw. Theory Tech. 2018, 66, 366–379. [Google Scholar] [CrossRef]
- Saravanan, M.; Priya, A. Design of Tri-Band Microstrip Patch Rectenna for Radio Frequency Energy Harvesting System. IETE J. Res. 2019. [Google Scholar] [CrossRef]
- Singh, N.; Kanaujia, B.K.; Beg, M.T.; Khan, T.; Kumar, S. A dual polarized multiband rectenna for RF energy harvesting. Int. J. Electron. Commun. 2018, 93, 123–131. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, Y.; Chiu, C.; Murch, R. A Triple-Band High-Gain Multibeam Ambient RF Energy Harvesting System Utilizing Hybrid Combining. IEEE Trans. Ind. Electron. 2020, 67, 9215–9226. [Google Scholar] [CrossRef]
- Pham, B.L.; Pham, A. Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Vu, H.S.; Nguyen, N.; Ha-Van, N.; Seo, C.; Le, M.T. Multiband Ambient RF Energy Harvesting for Autonomous IoT Devices. IEEE Microw. Wirel. Components Lett. 2020, 30, 1189–1192. [Google Scholar] [CrossRef]
- Bakytbekov, A.; Shamim, A. Additively Manufactured Triple-Band Fractal Antenna-on-Package for Ambient RF Energy Harvesting. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–3. [Google Scholar]
- Liu, J.; Zhang, X.Y. Compact Triple-Band Rectifier for Ambient RF Energy Harvesting Application. IEEE Access 2018, 6, 19018–19024. [Google Scholar] [CrossRef]
- Ahmad, W.; Qureshi, M.I.; Khan, W.T. A highly efficient tri band (GSM1800, WiFi2400 and WiFi5000) rectifier for various radio frequency harvesting applications. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017; pp. 2039–2044. [Google Scholar] [CrossRef]
- Tafekirt, H.; Pelegri-Sebastia, J.; Bouajaj, A.; Reda, B.M. A Sensitive Triple-Band Rectifier for Energy Harvesting Applications. IEEE Access 2020, 8, 73659–73664. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, Z.; Guo, Y. High-efficiency triple-band ambient RF energy harvesting for wireless body sensor network. In Proceedings of the 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), London, UK, 8–10 December 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Frome, UK, 2010. [Google Scholar]
- Wang, G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 2018, 10, 151–164. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Koulouridis, S.; Rocca, P.; Goudos, S.K. Modified Patch Antenna Design Using Moth Search Algorithm for RF Energy Harvesting Applications. In Proceedings of the 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, 25–28 February 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Papadopoulou, M.S.; Boursianis, A.D.; Skoufa, A.; Volos, C.K.; Stouboulos, I.N.; Nikolaidis, S.; Goudos, S.K. Dual-Band RF-to-DC Rectifier with High Efficiency for RF Energy Harvesting Applications. In Proceedings of the 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 7–9 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Jabbar, H.; Song, Y.S.; Jeong, T.T. RF energy harvesting system and circuits for charging of mobile devices. IEEE Trans. Consum. Electron. 2010, 56, 247–253. [Google Scholar] [CrossRef]
- Broadcom Limited. HSMS-2850, Surface Mount Zero Bias Schottky Detector Diodes. Available online: https://docs.broadcom.com/doc/AV02-1377EN (accessed on 20 December 2020).
- Shen, S.; Chiu, C.; Murch, R.D. Multiport Pixel Rectenna for Ambient RF Energy Harvesting. IEEE Trans. Antennas Propag. 2018, 66, 644–656. [Google Scholar] [CrossRef]











| MSA | PSO | DE | BBO | GWO | ABC | TLBO | ACO | |
|---|---|---|---|---|---|---|---|---|
| 7.957 × 100 | 3.023 × 10−1 | 1.102 × 100 | 2.799 × 10−1 | 1.403 × 10−1 | 3.516 × 100 | 8.696 × 10−2 | 9.439 × 100 | |
| 1.107 × 10−1 | 2.421 × 10−1 | 8.639 × 10−1 | 1.600 × 10−1 | 3.065 × 10−1 | 2.484 × 10−1 | 1.758 × 10−1 | 6.826 × 10−1 | |
| 0.000 × 100 | 1.995 × 10−3 | 1.138 × 10−2 | 2.556 × 10−3 | 3.209 × 10−3 | 9.227 × 10−4 | 2.136 × 10−3 | 8.850 × 10−3 | |
| 8.600 × 10−5 | 9.499 × 10−6 | 1.414 × 10−4 | 6.298 × 10−5 | 2.577 × 10−5 | 1.100 × 10−5 | 1.815 × 10−5 | 1.258 × 10−4 | |
| −1.867 × 102 | −1.865 × 102 | −1.858 × 102 | −1.865 × 102 | −1.862 × 102 | −1.865 × 102 | −1.865 × 102 | −1.848 × 102 | |
| 4.651 × 1049 | 8.094 × 1050 | 6.102 × 1056 | 4.509 × 1054 | 6.080 × 1056 | 2.239 × 1057 | 5.161 × 1051 | 2.283 × 1059 | |
| 1.009 × 102 | 1.457 × 100 | 1.612 × 101 | 2.443 × 100 | 2.296 × 100 | 3.109 × 101 | 9.115 × 10−1 | 2.192 × 102 | |
| 1.844 × 1015 | 8.963 × 1015 | 3.317 × 1018 | 2.495 × 1017 | 8.900 × 1018 | 5.373 × 1017 | 7.460 × 1015 | 3.200 × 1019 | |
| 4.080 × 10−4 | 1.378 × 10−3 | 2.251 × 10−2 | 3.972 × 10−3 | 4.849 × 10−3 | 5.703 × 10−4 | 2.041 × 10−3 | 1.131 × 10−2 | |
| −3.854 × 100 | −3.846 × 100 | −3.789 × 100 | −3.847 × 100 | −3.848 × 100 | −3.851 × 100 | −3.847 × 100 | −3.807 × 100 |
| Algorithm | MSA | PSO | DE | BBO | GWO | ABC | TLBO | ACO |
|---|---|---|---|---|---|---|---|---|
| Friedman test | 2.7 | 3.2 | 6.9 | 4.0 | 4.8 | 4.1 | 2.9 | 7.5 |
| Normalized Ranking | 1 | 3 | 7 | 4 | 6 | 5 | 2 | 8 |
| 80.29 | 103.41 | 44.76 | 11.45 | 41.71 | 11.03 | 64.70 | 10.96 | 11.58 | 12.20 | 56.60 | 85.70 | 68.71 |
| 4.9/46 | 3/33.7 | 3/45.6 | 3/33 | 1/3 | 20/15.8 | 3/23 | 1/13 | 22/19.8 |
| Ref. | Substrate | Freq. Bands | Max. Gain | IMN | RF Input | PCE and |
|---|---|---|---|---|---|---|
| [14] | RT/ Duroid 5880 | GSM-900, GSM-1800, UMTS-2100 | 8.15 dBi | Shunted and radial stubs, lumped elements | −10 dBm | 40% & 0.447 V @925 MHz 31% & 0.394 V @1820 MHz 25% & 0.354 V @2170 MHz |
| [15] | FR-4 | UMTS-2100, Wi-Fi 2.4 GHz, WiMAX | 9.2 dBi | Meander line, open and radial stubs | −13.5 dBm | 52% & 0.160 V @2.0 GHz 25% & 0.111 V @2.5 GHz 14% & 0.083 V @3.5 GHz |
| [16] | paper | LTE (0.79–0.96 GHz, 1.71–2.17 GHz, 2.5–2.69 GHz) | 6.0 dBi | Shunted and radial stubs, lumped elements | −10 dBm | 35% & 0.32 V @900 MHz 30% & 0.30 V @1800 MHz 28% & 0.29 V @2600 MHz |
| [17] | FR-4 | Wi-Fi 2.4 GHz, Wi-Fi 5 GHz, C-band | 4.42 dBi | Shorted stubs | −10 dBm | 50% & 0.28 V @2.45 GHz 45% & 0.27 V @5.05 GHz 35% & 0.24 V @4.075 GHz |
| [18] | FR-4 | C-band (5.42 GHz, 6.9 GHz, 7.61 GHz) | 7.3 dBi | Radial, shunted, and shorted stubs | 5 dBm | 14% & 1.152 V @5.42 GHz 15% & 1.193 V @6.90 GHz 42% & 1.996 V @7.61 GHz |
| This work | FR-4 | LoRa, GSM-1800, UMTS-2100 | 4.3 dBi | Shunted and shorted stubs | −10 dBm 5 dBm | 20% & 0.529 V @866.4 MHz 13% & 0.427 V @1841 MHz 13% & 0.427 V @1957 MHz 50% & 4.71 V @866.4 MHz 26% & 3.39 V @1841 MHz 28% & 3.52 V @1957 MHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boursianis, A.D.; Papadopoulou, M.S.; Koulouridis, S.; Rocca, P.; Georgiadis, A.; Tentzeris, M.M.; Goudos, S.K. Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications. Sensors 2021, 21, 3460. https://doi.org/10.3390/s21103460
Boursianis AD, Papadopoulou MS, Koulouridis S, Rocca P, Georgiadis A, Tentzeris MM, Goudos SK. Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications. Sensors. 2021; 21(10):3460. https://doi.org/10.3390/s21103460
Chicago/Turabian StyleBoursianis, Achilles D., Maria S. Papadopoulou, Stavros Koulouridis, Paolo Rocca, Apostolos Georgiadis, Manos M. Tentzeris, and Sotirios K. Goudos. 2021. "Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications" Sensors 21, no. 10: 3460. https://doi.org/10.3390/s21103460
APA StyleBoursianis, A. D., Papadopoulou, M. S., Koulouridis, S., Rocca, P., Georgiadis, A., Tentzeris, M. M., & Goudos, S. K. (2021). Triple-Band Single-Layer Rectenna for Outdoor RF Energy Harvesting Applications. Sensors, 21(10), 3460. https://doi.org/10.3390/s21103460
